Math, asked by Vaishu1822, 10 months ago

Find value of (a) for which (x-a)
is a factor of polynomial x^6-ax^5+x^4-ax^3+3x-a+2

Plz ans this question ☺☺​

Answers

Answered by sanketj
6

x - a \: is \: a \: factor \: of \:  \\ f(x) =  {x}^{6}  -  {ax}^{5}  +  {x}^{4} -  {ax}^{3}   + 3x -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  a + 2 \\  \\ then \\ x - a = 0 \\ x = a \\  \\ on \: putting \: x = a \\ the \: equation \: will \: be \: satisfied \: to \: the \\  \: value \: of \: 0 \\  \\ substituting \: x = a \: in \: f(x) \\  \\ f(a) =  {a}^{6}  - a( {a}^{5} ) +  {a}^{4}  - a( {a}^{3} ) +  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  3(a) - a + 2 \\ 0 =  {a}^{6}  -  {a}^{6}  +  {a}^{4}  -  {a}^{4}  + 3a - a + 2 \\ 0 = 2a + 2 \\ 2a =  - 2 \\ a =  \frac{ - 2}{2}  \\ a =  - 1

Hence, a = -1.

Similar questions