Math, asked by gokulrockz143, 4 months ago

find value of Alpha and beta.. explanation plz​

Attachments:

Answers

Answered by Flaunt
23

Given :

 \alpha  +  \beta  = 12

 \alpha  -  \beta  = 2 \sqrt{3}

To Find :

Value of  \alpha  \beta

 \alpha  +  \beta  = 12

 =  >  \alpha  = 12 -  \beta ...(1)

put alpha value into another equation:

  =  > \alpha  -  \beta  = 2 \sqrt{3}

 =  > 12 -  \beta  -  \beta  = 2 \sqrt{3}

 =  > 12 - 2 \beta  = 2 \sqrt{3}

 =  >  - 2 \beta  = 2 \sqrt{3}  - 12

 =  >  \beta  =  \frac{2 \sqrt{3}  - 12}{ - 2}

Taking 2 common from L.H.S

 =  >  \beta  =  \frac{2( \sqrt{3} - 6) }{ - 2}  =  - ( \sqrt{3}  - 6)

 \bold{\boxed{\purple{\beta  = 6 -  \sqrt{3}}}}

Put beta's value in equation 1

 =  >  \alpha  = 12 -  \beta

 =  >  \alpha  = 12 - (6 -  \sqrt{3} )

 =  >  \alpha  = 12 - 6 +  \sqrt{3}

 \bold{\boxed{\purple{ \alpha  = 6 +  \sqrt{3}}}}

 =  >  \alpha  \beta  = (6 +  \sqrt{3} )(6 -  \sqrt{3} )

Here,this identity is used:-

 \bold{\boxed{{x}^{2}  -  {y}^{2}  = (x + y)(x - y)}}

 =  >  \alpha  \beta  =  {(6)}^{2}  -  {( \sqrt{3}) }^{2}

 \bold{\red{ \alpha   \beta  = 36 - 3 = 33}}

Similar questions