Math, asked by varun7338, 1 year ago

Find value of if tangent to the curve y=x2-ax+7 is parallel to line

Answers

Answered by tanishkrathore37
0
Answer:

a=−4,b=7→y=x2−4x+7

Explanation:

y=x2+ax+b

y'=2x+a

We are told that the tangent at x=1 is 2x+y=6
→y=−2x+6
Therefore the slope of the tangent =−2

Since the slope of y at x=1 is given by y'(1)
2(1)+a=−2
a=−4

Now notice that y(1)=12+(−4)⋅1+b
y(1)=−3+b

Since the tangent touches y at x=1
y(1)=−2(1)+6→y(1)=4

Therefore: −3+b=4→b=7

Hence: a=−4,b=7 
y=x2−4x+7

Similar questions