Math, asked by shannu3434, 1 month ago

Find value of k for which the distance between the points P(1,k) and Q(4,2) is 5 units

Answers

Answered by saorishika06
0

Answer:

RESGE

Step-by-step explanation:

Answered by DeeznutzUwU
1

       \underline{\bold{Solution:}}

       \text{The two given point are }P(1,k) \text{ and }Q(4,2)

       \text{It is also given that }QP = 5 \text{ units}

       \text{Applying distance formula:}

       \sqrt{(x_1 - x_2)^{2} + (y_1-y_2)^{2}} = \text{Distance between }(x_1,y_1) \text{ and }(x_2,y_2)

\implies \sqrt{(1-4)^{2} + (k - 2)^{2})} = 5

\implies \sqrt{(-3)^{2} + (k-2)^{2}} = 5

       \text{Squaring both sides}

\implies (\sqrt{(-3)^{2} + (k-2)^{2}})^{2} = (5)^{2}

\implies (-3)^{2} + (k-2)^{2}} = 25

\implies 9 + (k-2)^{2} = 25

\implies (k-2)^{2} = 25 - 9

\implies (k-2)^{2} = 16

       \text{Rooting both sides}

\implies \sqrt{(k-2)^{2}} = \sqrt{16}

\implies k-2 = 4

\implies k = 4 + 2

\implies \boxed{k = 6}

Similar questions