Math, asked by rsgaming732, 8 months ago

- Find value of 'k' in kx²+8x+1=0 if it has two equal roots​

Answers

Answered by mayankgymnast
1

Answer:

D=0

b^2-4ac=0

8^2-4×k×1=0

64-4k=0

64=4k

64/4=k

16=k

Answered by Anonymous
1

\rm\huge\blue{\underline{\underline{ Question : }}}

Find the value of k in kx² + 8x + 1 = 0 if it has two equal roots.

\rm\huge\blue{\underline{\underline{ Solution : }}}

Given that,

  • kx² + 8x + 1 = 0, has two equal roots.

To find,

  • Value of k.

Forms used :

  • \sf\green{ :\implies Displacement = b^{2} - 4ac }

Let,

  • a = k
  • b = 8
  • c = 1

Substitute the values.

\bf\:\implies (8)^{2} - 4(k)(1) = 0

\bf\:\implies 64 - 4k = 0

\bf\:\implies 64 = 0 + 4k

\bf\:\implies 4k = 64

\bf\:\implies k = \frac{64}{4}

\bf\:\implies k = 16

\underline{\boxed{\bf{\purple{ \therefore The\:value\:of\:K = 16.}}}}\:\orange{\bigstar}

⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇

More Information :

\rm\red{:\implies D < 0,no \:  real  \: roots. }

\rm\red{:\implies D = 0,two \:  equal \:  real  \: roots. }

\rm\red{:\implies D > 0,two \:  distinct  \: real \:  roots. }

⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆

Similar questions