Math, asked by samcurrn, 11 months ago

find value of sin (19π/3)​

Answers

Answered by nessintin12
44

Step-by-step explanation:

 \sin( \frac{19\pi}{3} )   \\  =  \sin(19 \times 60)  \\  =  \sin(1140)  \\  =  \sin(90 \times 12 + 60)  \\  =  \sin(60 )  \\  =   \frac{ \sqrt{3} }{2}

val is positive as it lies in first quadrant....

HOPE IT HELPS..... PLZ MARK BRAINLIEST

Answered by Anonymous
22

\large\underline{ \underline{ \sf \: Solution  : \:  \:  \: }}

 \starSin (19π/3)

Firstly , we have to convert 19π/3 radian into degree measure

  \sf \large \fbox{\fbox{Degree  \: measure =  \frac{180}{\pi}  \times radian \:  measure}}

 =  \frac{180}{\pi}  \times  \frac{19\pi}{3}  \\  \\  = 60 \times 19 \\  \\  = 1140   \degree

So , Sin (19π/3) = Sin (1140)

Now ,

 \sf \implies Sin \:  (1140) \\  \\  \sf \implies Sin  \: (360 × 3 + 60) \\  \\  \sf \implies Sin \:  (60) \\  \\ \sf \implies \sqrt{3}/2

 \therefore The required value is √3/2

  \large\underline{ \underline{ \sf \: Remmember : \:  \:  \: }}

  \star  \:  \: \sf Sin \:  ( 360 × n + \theta  ) = Sin  \: ( \theta)

Similar questions