Math, asked by agarwalanant1154, 1 year ago

find value of (sin 55- cos 55)/sin10

Answers

Answered by pardeepsharma9121
17

Answer:

Step-by-step explanation:

(sin55-cos55)/sin10

sin(90-35)-cos55/sin10

cos35-cos55/sin10

[-2sin(35+55/2).sin(35-55/2)]/sin10

[+2sin45.sin10]/sin10

/sqrt{2}

Answered by pinquancaro
15

Answer:

\frac{\sin 55^\circ-\cos 55^\circ}{\sin 10^\circ}=\sqrt2

Step-by-step explanation:

Given : Expression \frac{\sin 55^\circ-\cos 55^\circ}{\sin 10^\circ}

To find : The value of the expression?

Solution :

Expression \frac{\sin 55^\circ-\cos 55^\circ}{\sin 10^\circ}

We know, \sin\theta=\cos(90-\theta)

\sin 55=\cos(90-55)

\sin 55=\cos(35)

Substitute in the expression,

=\frac{\cos 35^\circ-\cos 55^\circ}{\sin 10^\circ}

Applying identity, \cos A-\cos B=-2\sin(\frac{A+B}{2})\sin(\frac{A-B}{2})

\cos 35-\cos 55=-2\sin(\frac{35+55}{2})\sin(\frac{35-55}{2})

\cos 35-\cos 55=-2\sin(45)\sin(-10)

We know, \sin(-\theta)=-\sin\theta

\cos 35-\cos 55=2\sin(45)\sin(10)

Substitute in expression,

=\frac{2\sin(45)\sin(10)}{\sin 10}

=2\sin(45)

=2\times\frac{1}{\sqrt2}

=\sqrt2

Therefore, \frac{\sin 55^\circ-\cos 55^\circ}{\sin 10^\circ}=\sqrt2

Similar questions