Find value of sin(60 +A) - cos(30-A)
Answers
Answered by
5
cos (30° - θ) = cos { 90° -(60° + θ)}= sin(60°+ θ)
Now, Sin(60° + θ) - cos(30° - θ)
= Sin(60° + θ) - sin(60°+ θ)
= 0
Now, Sin(60° + θ) - cos(30° - θ)
= Sin(60° + θ) - sin(60°+ θ)
= 0
Answered by
7
sin(60° + A) - cos(30° - A) = 0
Step-by-step explanation:
Now, sin(60° + A) - cos(30° - A)
= sin(90° - 30° + A) - cos(30° - A)
= sin{90° - (30° - A)} - cos(30° - A)
= cos(30° - A) - cos(30° - A)
= 0
Trigonometry: Trigonometry is the study of angles and relations between angles and their sin, cos, tan, cosec, sec, cot ratios. There are many formulae for calculations:
• sin²A + cos²A = 1
• sec²A - tan²A = 1
• cosec²A - cot²A = 1
• sin2A = 2 sinA cosA
• cos2A = cos²A - sin²A
• tan2A = 2 tanA / (1 - tan²A)
• sin(90° - A) = cosA
• cos(90° - A) = sinA
Similar questions