find value of sin thetha
if 8sin thetha = 4+cos thetha find sin thetha. (with steps)
Answers
Answered by
2
Hey!!!!
Good Evening
Welcome to my 1200 th Brainly answer
_____________
let thetha = A (for easy typing)
Then we have
=> 8sinA = 4 + cosA
=> 8sinA - 4 = cosA -------(1)
Now we know
=> sin²A + cos²A = 1
=> cos²A = 1 - sin²A
Substituting both the cosA
=> 8sinA - 4 = √1 - sin²A
Squaring both sides
=> (8sinA - 4)² = 1 - sin²A
=> 64sin²A + 16 - 64sinA = 1 - sin²A
=> 65sin²A - 64sinA + 15 = 0
let sinA = x
=> 65x² - 64x + 15 = 0 (easy ?)
=> 65x² - 39x - 25x + 15 = 0 (splitting method)
=> 13x(5x - 3) - 5(5x - 3) = 0
=> (13x - 5)(5x - 3) = 0
Thus 13x - 5 = 0
=> x = 5/13
=> sinA = 5/13 <<<<<<< Answer
Or
=> 5x - 3 = 0
=> x = 3/5
=> sinA = 3/5 <<<<<<<<<Answer
________________
Hope this helps ✌️
Good Night :-)
Good Evening
Welcome to my 1200 th Brainly answer
_____________
let thetha = A (for easy typing)
Then we have
=> 8sinA = 4 + cosA
=> 8sinA - 4 = cosA -------(1)
Now we know
=> sin²A + cos²A = 1
=> cos²A = 1 - sin²A
Substituting both the cosA
=> 8sinA - 4 = √1 - sin²A
Squaring both sides
=> (8sinA - 4)² = 1 - sin²A
=> 64sin²A + 16 - 64sinA = 1 - sin²A
=> 65sin²A - 64sinA + 15 = 0
let sinA = x
=> 65x² - 64x + 15 = 0 (easy ?)
=> 65x² - 39x - 25x + 15 = 0 (splitting method)
=> 13x(5x - 3) - 5(5x - 3) = 0
=> (13x - 5)(5x - 3) = 0
Thus 13x - 5 = 0
=> x = 5/13
=> sinA = 5/13 <<<<<<< Answer
Or
=> 5x - 3 = 0
=> x = 3/5
=> sinA = 3/5 <<<<<<<<<Answer
________________
Hope this helps ✌️
Good Night :-)
Answered by
127
Hi,
Here is your answer !
____________________________
8sinθ = 4 + cosθ
8sinθ - 4 = cosθ
Squaring both sides, We get
(8sinθ - 4)² = cos²θ
64sin²θ - 64sinθ +16 = 1 - sin²θ
64sin²θ + sin²θ - 64sinθ + 16 - 1 = 0
65sin²θ - 64sinθ + 15 = 0
65sin²θ - 39sinθ - 25sinθ + 15 = 0
13sinθ (5sinθ - 3) - 5 (5sinθ - 3) = 0
(13sinθ - 5) (5sinθ - 3) = 0
=> 13sinθ - 5 = 0 or 5sinθ - 3 = 0
=> sinθ = 5/13 or sinθ = 3/5
____________________________
Formula used :
★ (a + b)² = a² + 2ab + b²
★ sin²A + cos²A = 1
=> cos²A = 1 - sin²A
Here is your answer !
____________________________
8sinθ = 4 + cosθ
8sinθ - 4 = cosθ
Squaring both sides, We get
(8sinθ - 4)² = cos²θ
64sin²θ - 64sinθ +16 = 1 - sin²θ
64sin²θ + sin²θ - 64sinθ + 16 - 1 = 0
65sin²θ - 64sinθ + 15 = 0
65sin²θ - 39sinθ - 25sinθ + 15 = 0
13sinθ (5sinθ - 3) - 5 (5sinθ - 3) = 0
(13sinθ - 5) (5sinθ - 3) = 0
=> 13sinθ - 5 = 0 or 5sinθ - 3 = 0
=> sinθ = 5/13 or sinθ = 3/5
____________________________
Formula used :
★ (a + b)² = a² + 2ab + b²
★ sin²A + cos²A = 1
=> cos²A = 1 - sin²A
RishabhBansal:
good answer different method though
Similar questions