find value of sin15 + tan15?
Answers
Answered by
1
Answer:
sin15 = (sin(45-30))
use formula sin(A-B) = sinA.cosA - cosA.sinB
to find sin15
sin15 = sin(45-30) = sin45.cos30 - cos45.sin30
→ 1/√2 x √3/2 - 1/√2 x 1/2
→ √3/2√2 - 1/2√2
→ (√3 - 1)/2√2
sin15 = (√3-1)/2√2
similarly now find tan15
tan(A-B) = (tanA - tanB)/1+tanA.tanB
tan15 = tan(45-30) = (tan45 - tan30)/1+tan45.tan30
tan15 = (1-1/√3)/(1+1/√3)
tan15 = ((√3-1)/√3)/(√3+1)/√3 = (√3-1)/(√3+1)
sin15 + tan15
= (√3-1)/2√2 + (√3-1)/(√3+1)
add them you will get your answer.
hope this will help you
Similar questions