Math, asked by proxima5, 9 months ago

Find value of sintheta+ sin3theta+sin5theta

Answers

Answered by Anonymous
1

Correct Question :)

Find the general solution of  \sf Sin( \theta) + Sin( 3\theta) + Sin( 5\theta)  = 0

Solution :)

  \sf \hookrightarrow \{Sin( 5\theta) + Sin( \theta) \} + Sin( 3\theta) = 0 \\  \\ \sf \hookrightarrow 2 Sin( \frac{ \theta + 5 \theta}{2})Cos( \frac{5 \theta -  \theta}{2} ) +  Sin(3 \theta)  = 0\\  \\ \sf \hookrightarrow 2Sin(3 \theta)Cos(2 \theta) +Sin(3 \theta)  = 0 \\  \\ \sf \hookrightarrow Sin(3 \theta)  \bigg\{2Cos(2 \theta)  + 1) \bigg \} = 0

 \sf \bold{ \underline{For  \: Sin(3 \theta)  = 0 }}

\sf \hookrightarrow 3x =  \frac{n}{\pi} \\  \\\sf \hookrightarrow x =  \frac{n\pi}{3}

\sf \bold{ \underline{For \: 2Cos(2 \theta)  + 1) = 0}}

 \sf \hookrightarrow Cos(2 \theta) =  -  \frac{1}{2} \\  \\\sf \hookrightarrow Cos(2 \theta) = Cos(\pi -  \frac{\pi}{3} ) \\   \\  \sf \hookrightarrow Cos(2 \theta) = Cos( \frac{2\pi}{3} ) \\  \\  \sf \hookrightarrow 2x = 2n\pi± \frac{2\pi}{3} \\  \\ \sf \hookrightarrow  x = n\pi±  \frac{\pi}{3}

Formula used :)

\star  \:  \:  \sf Sin(x) + Sin(y) = 2Sin (\frac{x + y}{2})  Cos( \frac{x - y}{2} ) \\  \\ \star  \:  \:  \sf Sin(x) =0 \: , \: x = n \pi \\  \\  \star  \:  \:  \sf Cos(x) = Cos(y) \: , \: x = 2n \pi ± y

Similar questions