Math, asked by clashwarrior, 1 year ago

find value of tan 7.5

Answers

Answered by Anonymous
1
tan 7.5 = 2.7060.....

clashwarrior: i need proved value
Answered by Anonymous
4

Solution:-

 \to \rm \: we \: can \: write \:  \:

 \tan7.2 =  \tan7  \dfrac{1}{2}

Let

 \rm \to \:  \theta =7  \dfrac{1}{2}  \: then, \: 2 \theta = 15 \degree

Now

 \tan \theta =  \dfrac{1 -  \cos2 \theta}{ \sin2 \theta }

 \rm \: [ \because1 -  \cos2 \theta = 2 \sin {}^{2} \theta \: and \:  \sin2 \theta = 2 \sin\theta  \cos\theta]

  =  \dfrac{1 -  \cos 15 \degree}{ \sin15 \degree }

We know that value of

 \to \cos15 \degree =  \dfrac{ \sqrt{3}  + 1}{2 \sqrt{2} }

 \to \sin 15 \degree = \dfrac{ \sqrt{3}   -  1}{2 \sqrt{2} }

put the value we get

 =  \dfrac{1 - \dfrac{ \sqrt{3}  + 1}{2 \sqrt{2} }   }{\dfrac{ \sqrt{3}   -  1}{2 \sqrt{2} } }

 \rm =  \dfrac{2 \sqrt{2}  -  \sqrt{3} - 1 }{ \sqrt{3}  - 1}  =  \dfrac{(2 \sqrt{2}  -  \sqrt{3}  - 1)( \sqrt{3}  + 1)}{( \sqrt{3} - 1)( \sqrt{3}   + 1)}

 =  \dfrac{2 \sqrt{6}  - 3 -  \sqrt{3 } + 2 \sqrt{2}   -  \sqrt{3} - 1 }{3 - 1}

 =  \dfrac{2 \sqrt{6}  - 2 \sqrt{3} - 4 + 2 \sqrt{2}  }{2}

 =  \sqrt{6}  -  \sqrt{3}  - 2 +  \sqrt{2}

 =  \sqrt{3} ( \sqrt{2}  - 1) -  \sqrt{2} ( \sqrt{2}  - 1)

 =  (\sqrt{3}  -  \sqrt{2} )( \sqrt{2}  - 1)

Answer

=  (\sqrt{3}  -  \sqrt{2} )( \sqrt{2}  - 1)

Similar questions