Math, asked by yuvrajkashyap, 3 months ago

Find value of
 \sec ^{ - 1} (2 \div  \sqrt{3 } )   +  \cos { }^{ - 1} ( - 1 \div 2)

Answers

Answered by Anonymous
2

Given Equation

⇒sec⁻¹(2/√3) + cos⁻¹(-1/2)

Using inverse trigonometric function property

⇒cos⁻¹(-x) = π - cos⁻¹(x)

We get

⇒sec⁻¹(2/√3) +π - cos⁻¹(1/2)

we know that

⇒sec(30°) = 2/√3

⇒sec⁻¹(2/√3) = 30°

Similarly

⇒cos(60°) = 1/2

⇒cos⁻¹(1/2) = 60°

Now put the value

⇒30° + π - 60°

We can write π = 180°

⇒30° + 180° - 60°

⇒30° + 120°

⇒150°

Answer

⇒150°

Answered by niha123448
0

Step-by-step explanation:

ANSWER ✍️

Given Equation

⇒sec⁻¹(2/√3) + cos⁻¹(-1/2)

Using inverse trigonometric function property

⇒cos⁻¹(-x) = π - cos⁻¹(x)

We get

⇒sec⁻¹(2/√3) +π - cos⁻¹(1/2)

we know that

⇒sec(30°) = 2/√3

⇒sec⁻¹(2/√3) = 30°

Similarly

⇒cos(60°) = 1/2

⇒cos⁻¹(1/2) = 60°

Now put the value

⇒30° + π - 60°

We can write π = 180°

⇒30° + 180° - 60°

⇒30° + 120°

⇒150°

Answer

⇒150°

hope this helps you!!

thank you ⭐

Similar questions