Find value of the variable n-(see the pic)
Answers
Given :-
To find :-
The value of 'n'.
Solution :-
Answer:
tt{25^n^-^1+100=5^2^n^-^1}
To find :-
The value of 'n'.
Solution :-
\tt{25^{n-1}=5^2^{(n-1)}=5^{2n-2}}
\begin{gathered}\displaystyle{\tt{5^{2n-2}+100=5^{2n-1}}}\\\\\displaystyle{\tt{\implies \frac{5^{2n-1}}{5}+100=5^{2n-1}} }\\\\\displaystyle{\texttt{Let }}5^{2n-1}\texttt{ be x.}\\\\\displaystyle{\tt{\implies \frac{x}{5}+100=x }}\\\\\displaystyle{\tt{\implies 100=x-\frac{x}{5} }}\\\\\displaystyle{\tt{\implies 100=\frac{4x}{5} }}\\\\\displaystyle{\tt{\implies x=\frac{500}{4}=125 }}\end{gathered}
5
2n−2
+100=5
2n−1
⟹
5
5
2n−1
+100=5
2n−1
Let 5
2n−1
be x.
⟹
5
x
+100=x
⟹100=x−
5
x
⟹100=
5
4x
⟹x=
4
500
=125
\begin{gathered}\tt{Now,}\\\\\displaystyle{\tt{5^{2n-1}=125}}\\\\\displaystyle{\tt{\implies 5^{2n-1}=5^3}}\\\\\displaystyle{\tt{\implies 2n-1=3}}\\\\\tt{As\ the\ base\ is\ same\ in\ both\ the\ sides\ i.e.\ 5.}\\\\\displaystyle{\tt{n=\frac{3+1}{2} }}\\\displaystyle{\tt{\boxed{\implies n=2}}}\\\end{gathered}
Now,
5
2n−1
=125
⟹5
2n−1
=5
3
⟹2n−1=3
As the base is same in both the sides i.e. 5.
n=
2
3+1
⟹n=2
Step-by-step explanation:
if you like the answers please please mark as brainliest please