find value of x : 1/x-1/x+b=1/a-1/a+b
Answers
Answer:
(1/a)+b+x =(1/a)+(1/b)+(1/x)
or. (1/a)-(1/a)+b+x= (1/b)+(1/x)
or. b+x=(1/b)+(1/x)
or. x+b=(x+b)/bx
or. (x+b) - (x+b)/bx =0
or. (x+b).(1–1/bx)=0
Either x+b=0 => x =-b
Or 1 -1/bx =0. => x=1/b.
x = -b and 1/b. Answer.
If the given question is as follows:-
1/(a+b+x) = (1/a)+(1/b) +(1/x)
or. 1/(a+b+x) -1/x=1/a+1/b
or(x-a-b-x)/x.(a+b+x)=(b+a)/a.b
or. -(a+b)/x.(a+b+x)=(b+a)/a.b
or. -1/x.(a+b+x) = 1/a.b
or. x.(a+b+x) = -ab
or. x^2+(a+b).x+ab=0
or. x^2+ax+bx+ab=0
or. x(x+a)+b(x+a)=0
or. (x+a).(x+b)=0
or. x= -a and. -b. Answer.
Step-by-step explanation:
please mark me as brainlest
x can be any integer
Step-by-step explanation:
in the eqn 1/x and 1/b are cancelled out. The remaining b will be the rhs &lhs. so, the variable x doesn't indicate a specific value, it may a positive or negative integer..