find value of x
Answer a question
Answers
hope it's helpful
hope it's helpful
Answer:
(x^4 + 2xi) - (3x² + yi) = (3 - 5i) + (1 + 2yi)
x^4 + 2xi - 3x² - yi = 3 - 5i + 1 + 2yi
x^4 + 2xi - 3x² - yi = 4 - 5i + 2yi
x^4 + 2xi - 3x² - yi - 4 + 5i - 2yi = 0
x^4 + 2xi - 3x² - 3yi - 4 + 5i = 0
x^4 - 3x² - 4 + 2xi - 3yi + 5i = 0
(x^4 - 3x² - 4) + i(2x - 3y + 5) = 0
Condition for the real part:
x^4 - 3x² - 4 = 0 → let: X = x² →where X ≥ 0
X² - 3X - 4 = 0
X² - (4X - X) - 4 = 0
X² - 4X + X - 4 = 0
(X² - 4X) + (X - 4) = 0
X(X - 4) + (X - 4) = 0
(X - 4)(X + 1) = 0
First case: (X - 4) = 0 → X - 4 = 0 → X = 4 → x² = 4 → x = ± 2
Second case: (X + 1) = 0 → X + 1 = 0 → X = - 1 → no possible
Condition for the imaginary part:
2x - 3y + 5 = 0
3y = 2x - 5
First possibility: x = 2 → 3y = 4 - 2 → 3y = 2 → y = 2/3
Second possibility: x = - 2 → 3y = - 4 - 2 → 3y = - 6 → y = - 2
First solution (2 ; 2/3)
Second solution (- 2 ; - 2)
Step-by-step explanation: