Math, asked by garga2759, 3 months ago

Find value of x, y
(√32)^x ÷2^y+1=1,16^4-x/2 -8^y=0

Answers

Answered by vipinkumar212003
0

Answer:

 \frac{  {(\sqrt{32})}^{x}  }{ {2}^{y} + 1 }  = 1  \\  {32}^{ \frac{x}{2} } = {2}^{y} + 1 \\   {2}^{ 5 \times \frac{x}{2}  }  =  {2}^{y} +  {2}^{0}   \\  \blue{ \mathfrak{  \large \underline{on \: comparing} }}: \\  \frac{5x}{2}  = y + 0 \\ 5x = 2y \\ x =  \frac{2y}{5}   - (i)\\  {16}^{ \frac{4 - x}{2} }  -  {8}^{y}  = 0 \\ {16}^{ \frac{4 - x}{2} }   =  {8}^{y}   \\  {2}^{4 \times  \frac{(4 - x)}{2} }  =  {2}^{3y}  \\  {2}^{(8 - 2x)}  =  {2}^{3y}  \\   \blue{ \mathfrak{ \large\underline{on \: comparing }}}: \\ 8 - 2x = 3y - (ii) \\  \blue{ \mathfrak{  \large\underline{putting \: value \: of \: x \: in \: equation \: (ii)}}} :  \\ 8 - 2 \times  \frac{2y}{5}  = 3y \\ 8 -  \frac{4y}{5}  = 3y \\  \frac{40 - 4y}{5}  = 3y \\ 40 - 4y = 15y \\ 40 = 19y \\ y =  \frac{40}{19}  \\   \blue{ \mathfrak{ \large\underline{put \: the \: value \: of \: y \: in \: equation \: (i )}}}:  \\ x =  \frac{2 \times 40}{5 \times 19}  \\ x =   \frac{16}{19}

HOPE IT HELPS YOU

MARK ME BRAINLIEST

Similar questions