Math, asked by YashavGoyal, 1 year ago

find value of x + Y + Z if X square + Y square + Z square equal to 18 and xy + Y Z plus ZX is equals to 9​

Answers

Answered by Anonymous
17

Answer:

\green{x+y+z=6}

Step-by-step explanation:

\boxed{Given}

x {}^{2}  + y {}^{2}  + z {}^{2}  = 18

xy + yz + zx = 9

\boxed{Tofind}

value of

x + y + z

\boxed{Answer}

using identity

(x  + y + z) {}^{2}  = x {}^{2}  + y {}^{2}  + z {}^{2}  + 2xy + 2yz + 2zx

(x + y + z \: ) = x {}^{2}   + y {}^{2}  + z {}^{2}  + 2(xy + yz + zx)

now putting the given values, we get

(x + y + z) {}^{2}  = 18 + 2(9)

(x + y + z) {}^{2}  = 18 + 18

(x + y + z) {}^{2}  = 36

x + y + z =  \sqrt{36}

x + y + z = 6

Answered by somachatterjee136
1

Answer:

Answer:

\green{x+y+z=6}x+y+z=6

Step-by-step explanation:

\boxed{Given}

Given

x {}^{2} + y {}^{2} + z {}^{2} = 18x

2

+y

2

+z

2

=18

xy + yz + zx = 9xy+yz+zx=9

\boxed{Tofind}

Tofind

value of

x + y + zx+y+z

\boxed{Answer}

Answer

using identity

(x + y + z) {}^{2} = x {}^{2} + y {}^{2} + z {}^{2} + 2xy + 2yz + 2zx(x+y+z)

2

=x

2

+y

2

+z

2

+2xy+2yz+2zx

(x + y + z \: ) = x {}^{2} + y {}^{2} + z {}^{2} + 2(xy + yz + zx)(x+y+z)=x

2

+y

2

+z

2

+2(xy+yz+zx)

now putting the given values, we get

(x + y + z) {}^{2} = 18 + 2(9)(x+y+z)

2

=18+2(9)

(x + y + z) {}^{2} = 18 + 18(x+y+z)

2

=18+18

(x + y + z) {}^{2} = 36(x+y+z)

2

=36

x + y + z = \sqrt{36}x+y+z=

36

x + y + z = 6x+y+z=6

Similar questions