find value of x + Y + Z if X square + Y square + Z square equal to 18 and xy + Y Z plus ZX is equals to 9
Answers
Answer:
Step-by-step explanation:
value of
using identity
now putting the given values, we get
Answer:
Answer:
\green{x+y+z=6}x+y+z=6
Step-by-step explanation:
\boxed{Given}
Given
x {}^{2} + y {}^{2} + z {}^{2} = 18x
2
+y
2
+z
2
=18
xy + yz + zx = 9xy+yz+zx=9
\boxed{Tofind}
Tofind
value of
x + y + zx+y+z
\boxed{Answer}
Answer
using identity
(x + y + z) {}^{2} = x {}^{2} + y {}^{2} + z {}^{2} + 2xy + 2yz + 2zx(x+y+z)
2
=x
2
+y
2
+z
2
+2xy+2yz+2zx
(x + y + z \: ) = x {}^{2} + y {}^{2} + z {}^{2} + 2(xy + yz + zx)(x+y+z)=x
2
+y
2
+z
2
+2(xy+yz+zx)
now putting the given values, we get
(x + y + z) {}^{2} = 18 + 2(9)(x+y+z)
2
=18+2(9)
(x + y + z) {}^{2} = 18 + 18(x+y+z)
2
=18+18
(x + y + z) {}^{2} = 36(x+y+z)
2
=36
x + y + z = \sqrt{36}x+y+z=
36
x + y + z = 6x+y+z=6