Find value of x3+y3+12xy-64 when x+y=41
Answers
Answered by
0
Given, x + y = 41 ........(1)
we have to find out value of x³ + y³ + 12xy - 64
x³ + y³ + 12xy - 64
as you know, a³ + b³ = (a + b)(a² + b² - ab)
so, x³ + y³ = (x + y)(x² + y² - xy)
= (x + y)(x² + y² - xy) + 12xy - 64
= 41(x² + y² + 2xy - 3xy) + 12xy - 64 [ from equation (1),]
= 41{(x + y)² - 3xy} + 12xy - 64
= 41{41² - 3xy} + 12xy - 64
= 41³ - 41 × 3xy + 12xy - 64
here you did mistake in typing. question should be find the value of x³ + y³ + 12xy - 64 when x + y = 4 then, we will get a numerical value .
if x + y = 4
then, (x + y)(x² + y² - xy) + 12xy - 64
= 4{(x + y)² - 3xy} + 12xy - 64
= 4{4² - 3xy} + 12xy - 64
= 4³ - 12xy + 12xy - 64
= 64 - 12xy + 12xy - 64
= 0
we have to find out value of x³ + y³ + 12xy - 64
x³ + y³ + 12xy - 64
as you know, a³ + b³ = (a + b)(a² + b² - ab)
so, x³ + y³ = (x + y)(x² + y² - xy)
= (x + y)(x² + y² - xy) + 12xy - 64
= 41(x² + y² + 2xy - 3xy) + 12xy - 64 [ from equation (1),]
= 41{(x + y)² - 3xy} + 12xy - 64
= 41{41² - 3xy} + 12xy - 64
= 41³ - 41 × 3xy + 12xy - 64
here you did mistake in typing. question should be find the value of x³ + y³ + 12xy - 64 when x + y = 4 then, we will get a numerical value .
if x + y = 4
then, (x + y)(x² + y² - xy) + 12xy - 64
= 4{(x + y)² - 3xy} + 12xy - 64
= 4{4² - 3xy} + 12xy - 64
= 4³ - 12xy + 12xy - 64
= 64 - 12xy + 12xy - 64
= 0
Answered by
0
Given, x + y = 41
find out value of x³ + y³ + 12xy - 64
X³ + y³ + 12xy - 64
a³ + b³ = (a + b)(a² + b² - ab)
so, x³ + y³ = (x + y)(x² + y² - xy)
= 41{(x + y)² - 3xy} + 12xy - 64
= 41³ - 41 × 3xy + 12xy - 64
if x + y = 4
(x + y)(x² + y² - xy) + 12xy - 64
= 64 - 12xy + 12xy - 64
= 0
Similar questions