Find values of a and b so that x^4 + x^3 + 8x^2+ ax + bis divisible by x^2+ 13
Answers
Answered by
0
If x²+13 is a factor of x^4+x^3+8x^2+ax+b
So,when the value of x from x²+13 is put into x^4+x^3+8x^2+ax+b will be equal to 0.
x²+13=0
x²=(-13)
x=√-13
Now,
(√-13)^4+(√-13)^3+8(√-13)^2 +a(√-13) +b =0
=169+(13√-13)-104+(a√-13)+b=0
=65+(√-13)(13+a)+b=0
=13+a+b=(-65/√-13)
=13+a+b=(-65/√-13×√-13/√-13)
=a+b=(-65√-13/-13)
=a+b=5√-13
Similar questions