English, asked by mohitkslanekar2727, 4 months ago

Find values of a and b which for simultanious equation x + 2y = 1 and ( a - b)x + ( a + b) y = a+b - 2


no spam ❌
help me with correct answer please ​

Answers

Answered by Anonymous
80

Answer:

 \sf \huge \purple{Given :-}

☣Two equation :

  1. x + 2y = 1
  2. (a - b)x + (a + b)y = (a + b) - 2

❖To Find :-

What is the value of a and b.

‌\huge\mathcal{\fcolorbox{cyan}{black}{\pink{❥ᴀ᭄ɴsᴡᴇʀ࿐}}}

Given two equation :

 \bold{\mapsto↦ \sf x + 2y = 1x+2y=1 \begin{gathered}\sf \\ \implies \bold{x + 2y - 1 =\: 0\: -----\: Equation\: no\: (1)}\\ \end{gathered} }

 \sf\mapsto↦ \sf (a - b)x + (a + b)y = (a + b) - 2(a−b)x+(a+b)y=(a+b)−2

\begin{gathered}\sf \\ \implies \bold{(a - b)x + (a + b)y - (a + b + 2) =\: 0\: -----\: Equation\: no\: (2)}\\ \end{gathered} </p><p>

Now, as we know that,

\implies{\pink{\boxed{\large{\bold{\dfrac{a_1}{a_2} =\: \dfrac{b_1}{b_2} =\: \dfrac{c_1}{c_2}}}}}}

From this formula we get,

\sf a_1 =\: 1a

\sf b_1 =\: 2b

\sf c_1 =\: - 1c

\sf a_2 =\: (a - b)a

\sf b_2 =\: (a + b)b

\sf c_2 =\: - (a + b - 2)c

Then we get,

\implies\sf \purple{ \dfrac{1}{a - b} =\: \dfrac{2}{a + b} =\: \dfrac{- 1}{- (a + b - 2)} }

Now, by taking first two parts we get,

⇒ \sf \purple{ \dfrac{1}{a - b} =\: \dfrac{2}{a + b} }

By doing cross multiplication we get,

⇒ \sf \red{ 2(a - b) =\: a + b2(a−b)=a+b}

 ⇒ \sf \red{ 2a - 2b =\: a + b2a−2b=a+b}

⇒ \sf  \red{2a - a =\: 2b + b2a−a=2b+b}

\begin{gathered}\sf \implies \bold{\pink{a =\: 3b -----\: Equation\: no\: (3)}}\\ \end{gathered}

Again, by taking last two parts we get,

↦ \sf  \purple{\dfrac{2}{a + b} =\: \dfrac{{\cancel{-}} 1}{{\cancel{-}} (a + b - 2)}  }

By doing cross multiplication we get,

↦ \sf  \red{2(a + b - 2) =\: a + b2(a+b−2)=a+b}

↦ \sf \red{ 2a + 2b - 4 =\: a + b2a+2b−4=a+b}

↦ \sf  \red{2a - a + 2b - b =\: 42a−a+2b−b=4}

\begin{gathered}\sf \implies \bold{\pink{a + b =\: 4\: -----\: Equation\: no\: (4)}}\\ \end{gathered}

Now, by putting the value of equation no (3) in the equation no (4) we get,

↛ \sf  \red{3b + b =\: 43b+b=4}

↛ \sf  \red{4b =\: 44b=4}

↛ \sf  \red{b =\: \dfrac{\cancel{4}}{\cancel{4}}}

➠ \sf \huge\bold{\purple{b =\: 1}}

Again, by putting the value of b in the equation no (3) we get,

↛ \sf  \red{a = 3ba=3b}

↛ \sf  \red{a = 3(1)a=3(1)}

↛ \sf  \red{a =\: 3 \times 1a=3×1}

➠ \sf \huge\mathfrak{\purple{a =\: 3}}

 \sf  \red{ The  \: value \:  of  \: a  \: is \: } {\huge  \mathfrak\purple{ 3 }} \sf \red {\:  and  \:  value of  \: b \:  is } \huge \mathfrak \purple{ \: 1 .}

Answered by ItzMeMukku
0

Explanation:

Answer:

\sf \huge \purple{Given :-}

☣Two equation :

x + 2y = 1

(a - b)x + (a + b)y = (a + b) - 2

❖To Find :

What is the value of a and b.

‌\huge\mathcal{\fcolorbox{cyan}{black}{\pink{❥ᴀ᭄ɴsᴡᴇʀ࿐}}}‌

Given two equation :

\begin{gathered} \bold{\mapsto↦ \sf x + 2y = 1x+2y=1 \begin{gathered}\sf \\ \implies \bold{x + 2y - 1 =\: 0\: -----\: Equation\: no\: (1)}\\ \end{gathered} }\end{gathered}

\sf\mapsto↦ \sf (a - b)x + (a + b)y = (a + b) - 2(a−b)x+(a+b)y=(a+b)−2

\begin{gathered}\begin{gathered}\sf \\ \implies \bold{(a - b)x + (a + b)y - (a + b + 2) =\: 0\: -----\: Equation\: no\: (2)}\\ \end{gathered} &lt; /p &gt; &lt; p &gt; \end{gathered}

</p><p>

Now, as we know that,

\implies{\pink{\boxed{\large{\bold{\dfrac{a_1}{a_2} =\: \dfrac{b_1}{b_2} =\: \dfrac{c_1}{c_2}}}}}}

From this formula we get,

\sf a_1 =\: 1aa

\sf b_1 =\: 2bb

\sf c_1 =\: - 1cc

\sf a_2 =\: (a - b)

\sf b_2 =\: (a + b)

\sf c_2 =\: - (a + b - 2)

Then we get,

\implies\sf \purple{ \dfrac{1}{a - b} =\: \dfrac{2}{a + b} =\: \dfrac{- 1}{- (a + b - 2)} }

Now, by taking first two parts we get,

⇒ \sf \purple{ \dfrac{1}{a - b} =\: \dfrac{2}{a + b} }

By doing cross multiplication we get,

⇒ \sf \red{ 2(a - b) =\: a + b2(a−b)=a+b}

⇒ \sf \red{ 2a - 2b =\: a + b2a−2b=a+b}

⇒ \sf \red{2a - a =\: 2b + b2a−a=2b+b}

\begin{gathered}\begin{gathered}\sf \implies \bold{\pink{a =\: 3b -----\: Equation\: no\: (3)}}\\ \end{gathered} \end{gathered}

Again, by taking last two parts we get,

↦ \sf \purple{\dfrac{2}{a + b} =\: \dfrac{{\cancel{-}} 1}{{\cancel{-}} (a + b - 2)}}

By doing cross multiplication we get,

↦ \sf \red{2(a + b - 2) =\: a + b2(a+b−2)=a+b}

↦ \sf \red{ 2a + 2b - 4 =\: a + b2a+2b−4=a+b}

↦ \sf \red{2a - a + 2b - b =\: 42a−a+2b−b=4}

\begin{gathered}\begin{gathered}\sf \implies \bold{\pink{a + b =\: 4\: -----\: Equation\: no\: (4)}}\\ \end{gathered}\end{gathered}

Now, by putting the value of equation no (3) in the equation no (4) we get,

↛ \sf \red{3b + b =\: 43b+b=4}

↛ \sf \red{4b =\: 44b=4}↛4b=44b=4

↛ \sf \red{b =\: \dfrac{\cancel{4}}{\cancel{4}}}

➠ \sf \huge\bold{\purple{b =\: 1}}➠b=1

Again, by putting the value of b in the equation no (3) we get,

↛ \sf \red{a = 3ba=3b}

↛ \sf \red{a = 3(1)a=3(1)}

↛ \sf \red{a =\: 3 \times 1a=3×1}

➠ \sf \huge\mathfrak{\purple{a =\: 3}}➠a=3

\sf \red{ The \: value \: of \: a \: is \: } {\huge \mathfrak\purple{ 3 }} \sf \red {\: and \: value of \: b \: is } \huge \mathfrak \purple{ \: 1 .}

Similar questions