Math, asked by Shilpshree, 1 year ago

find values of M and n if 4^2m = cube root of (16)^-6/n =( Square root of 8) ^2

Answers

Answered by Robin0071
35
Solution:-

given by:-

 {4}^{2m}  =  \sqrt[3]{ {(16)}^{ -  \frac{6}{n} } }  =   { (\sqrt{8} )}^{2}    \\ \\  {2}^{4m}  =  {2}^{3}  \\ 4m = 3 \\ (m =  \frac{3}{4} ) \: ans \\  \\  \sqrt[3]{( {16)}^{ -  \frac{6}{n} } }  =  {( \sqrt{8}) }^{2}  \\  {16}^{ \frac{ - 6}{n}  \times  \frac{1}{3} }  =  {2}^{3}  \\  {( {2}^{4} )}^{ \frac{ - 2}{n} }  =  {2}^{3}  \\  {2}^{ -  \frac{8}{n} }  =  {2}^{3}  \\  \frac{ - 8}{n }  = 3 \\  \frac{ - n}{8}  =  \frac{1}{3}  \\ (n =  -  \frac{8}{3} ) \: ans \\ i \: hope \: its \: helpfull
Similar questions