Find values of sin 30 ,cos 30,tan30,cosec30,sec30 and cot 30 by using ratio concepts
Answers
Step-by-step explanation:
Take an equilateral triangle ∆ABC,Draw a perpendicular which join point C to the midpoint of AB;D
As we know that in Equilateral triangle Altitudes from a vertex,bisects angle as well as side.
To calculate sin 30°
we know that
To find
CD,apply Pythagoras Theorem in right triangle CAD
Also
Hope it helps you.
Take an equilateral triangle ∆ABC,Draw a perpendicular which join point C to the midpoint of AB;D
As we know that in Equilateral triangle Altitudes from a vertex,bisects angle as well as side.
To calculate sin 30°
we know that
\begin{gathered}\angle ACD= 30° \\\end{gathered}
∠ACD=30°
\begin{gathered}sin \: 30° = \frac{opposite \: side \: of \: angle}{hypotenuse} \\ \\sin \: 30° = \frac{AD}{AC} \\ \\ sin \: 30° = \frac{ \frac{a}{2} }{a} \\ \\ sin \: 30° = \frac{1}{2} \\ \\ cosec \: 30° = \frac{AC}{AD} = 2 \\ \\\end{gathered}
sin30°=
hypotenuse
oppositesideofangle
sin30°=
AC
AD
sin30°=
a
2
a
sin30°=
2
1
cosec30°=
AD
AC
=2
To find
CD,apply Pythagoras Theorem in right triangle CAD
\begin{gathered}CD = \sqrt{ {a}^{2} - \frac{ {a}^{2} }{4} } \\ \\ CD = \frac{ \sqrt{3} a}{2} \\ \\\end{gathered}
CD=
a
2
−
4
a
2
CD=
2
3
a
\begin{gathered}cos\: 30° = \frac{adjacent \: side \: of \: angle}{hypotenuse} \\ \\cos \: 30° = \frac{CD}{AC} \\ \\ cos\: 30° = \frac{ \frac{ \sqrt{3} a}{2} }{a} \\ \\ cos \: 30° = \frac{ \sqrt{3} }{2} \\ \\ sec \: 30° = \frac{AC}{CD} \\ \\ sec30°= \frac{2}{ \sqrt{3} } \\ \\\end{gathered}
cos30°=
hypotenuse
adjacentsideofangle
cos30°=
AC
CD
cos30°=
a
2
3
a
cos30°=
2
3
sec30°=
CD
AC
sec30°=
3
2
Also
\begin{gathered}tan \: 30°= \frac{AD}{CD} \\ \\ = \frac{ \frac{a}{2} }{ \frac{ \sqrt{3} a}{2} } \\ \\ tan \: 30°= \frac{1}{ \sqrt{3} } \\ \\ cot \: 30° = \frac{CD}{AD} \\ \\ cot \: 30° = \sqrt{3} \\ \\\end{gathered}
tan30°=
CD
AD
=
2
3
a
2
a
tan30°=
3
1
cot30°=
AD
CD
cot30°=
3