Find vector sum of 2 equations...... 1)A1=asin(wt-kx) and A2=acos(wt-kx)
Answers
Answered by
2
here superposition principal use
Y=A1+A2
=asin(wt-kx)+acos(wt-kx)
=√(a^2+a^2){a/√(a^2+a^2)sin(wt-kx)+a/√(a^2+a^2).cos(wt-kx)}
=√2a{1/√2.sin(wt-kx)+1/√2cos(wt-kx)}
=√2a{sin(wt-kx).cosπ/4+cos(wt-kx).sinπ/4}
=√2a sin(wt-kx+π/4)
hence resultant is √2a sin(wt-kx+π/4)
Y=A1+A2
=asin(wt-kx)+acos(wt-kx)
=√(a^2+a^2){a/√(a^2+a^2)sin(wt-kx)+a/√(a^2+a^2).cos(wt-kx)}
=√2a{1/√2.sin(wt-kx)+1/√2cos(wt-kx)}
=√2a{sin(wt-kx).cosπ/4+cos(wt-kx).sinπ/4}
=√2a sin(wt-kx+π/4)
hence resultant is √2a sin(wt-kx+π/4)
Similar questions