Math, asked by suhan03, 3 months ago

Find vertex M of parallelogram LMNO, where L-(10,-5), N=(-4,-2) and 0(-14, -2).​

Answers

Answered by mathdude500
14

\large\underline\blue{\bold{Given :-  }}

\begin{gathered}\begin{gathered}\sf \: A  \: ||gm  \: LMNO  \: with \: vertex \begin{cases} &\sf{L(10,-5)} \\ &\sf{N(-4,-2)}\\ &\sf{0(-14, -2).} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{To \:  Find :-  }}

\begin{gathered}\begin{gathered}\bf Find \begin{cases} &\sf{fourth \: vertex \: of \: parallelogram \: M}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

❥︎Let us consider a line segment joining the points A and B

\sf \:  ⟼A(x_1,y_1)  \: and \:  B(x_2,y_2)

and Let C (x, y) be the midpoint of AB, then coordinates of C is given by

\bf \:( x, y) = (\dfrac{x_1+x_2}{2}  , \dfrac{y_1+y_2}{2} )

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

Let the coordinates of fourth vertex be M (x, y).

❥︎ We know,

❥︎ In a parallelogram, diagonals bisect each other.

❥︎ So, in parallelogram LMNO, LN and MO are diagonals.

❥︎ Hence, midpoint of LN = midpoint of MO

\sf \:  ⟼\bf \:(\dfrac{10 - 4}{2}  , \dfrac{ - 5 - 2}{2} ) = (\dfrac{x - 14}{2}  , \dfrac{y - 2}{2} )

\sf \:  ⟼(\dfrac{6}{2}  , \dfrac{ - 7}{2} ) = (\dfrac{x - 14}{2}  , \dfrac{y - 2}{2} )

❥︎ On comparing, we get

\sf \:  ⟼x - 14 = 6 \: and \: y - 2 =  - 7

\bf\implies \:x = 20 \: and \: y \:  =  - 5

❥︎ Hence, the coordinates of M is (20, -5)

─━─━─━─━─━─━─━─━─━─━─━─━─

{\boxed{\boxed{\bf{Hence, \:  the \:  coordinates  \: of  \: M \:  is  \: (20, -5)</p><p>}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions