Math, asked by anusingh78600, 4 months ago

find volume of the cylinder whose vertical height is 7cm and radius is 2 cm ?​

Answers

Answered by llNidhill
70

Answer

 \sf  \color{green}\: Volume \: Of \: Cylinder \:  = \pi \: r {}^{2} h \\  =  \frac{22}{ \cancel7} \times 2 \times 2 \times \cancel 7 \\  = 22 \times 2 \times 2 \\  = 22 \times 4 \\   \green{= 88}

More To Know :-

  • Volume of Cuboid = l×b×h
  • Volume of cube = l³

Attachments:
Answered by mathdude500
4

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{Height_{(cylinder)} = 7 \: cm} \\ &\sf{Radius{(cylinder)} = 2 \: cm} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:find - \begin{cases} &\sf{Volume_{(cylinder)}}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

  \:  \:  \:  \: \boxed{ \bf{ \: Volume_{(cylinder)} = \pi \:  {r}^{2} h}}

where,

  • r = radius of cylinder

  • h = height of cylinder

\large\underline{\sf{Solution-}}

Given,

  • Height of the cylinder, h = 7 cm

  • Radius of the cylinder, r = 2 cm

So,

  • Volume of cylinder is given by

\rm :\longmapsto\:Volume_{(cylinder)} = \pi \:  {r}^{2} h

\rm :\longmapsto\:Volume_{(cylinder)} = \: \dfrac{22}{ \cancel7}  \:  \times  \:  {(2)}^{2} \:   \times   \: \cancel7

\rm :\longmapsto\:Volume_{(cylinder)} = 22  \: \times  \: 4

\bf\implies \:Volume_{(cylinder)} \:  =  \: 88 \:  {cm}^{3}

Additional Information :-

1. \:  \:  \:   \:  \:  \:  \: \boxed{ \sf{ \: Volume_{(cylinder)} = \pi \:  {r}^{2} h}}

2. \:  \:  \:   \:  \:  \:  \: \boxed{ \sf{ \: Curved  \: Surface \:  Area_{(cylinder)} = 2\pi \:  {r} h}}

3. \:  \:  \:   \:  \:  \:  \: \boxed{ \sf{ \: Total \:  Surface \:  Area_{(cylinder)} = 2 \: \pi \:  {r} (h \:  +  \: r)}}

Similar questions