Math, asked by prateek123546, 11 months ago

find when a+b=2
a^{3}+b^{3}+6ab+8

Answers

Answered by ProSaurav
1

Answer:

2(a+b)^3

Step-by-step explanation:

(a+b)^3=2^3=8

(a+b)^3=a^3+b^3+3ab(2)

Substituting,

a^3 + b^3 + 6ab + (a+b)^3

=a^3 + b^3 + 6ab + a^3 + b^3 + 3ab(2)

=2a^3 + 2b^3 + 2(6ab)

=2(a^3 + b^3 + 6ab)

=2((a+b)(a+b)(a+b))

=2*(a+b)^3

Similar questions