Math, asked by gurjotsingh56789, 7 months ago

find where the tangent is parallel to x axis for the curve x^3+y^3=a^3 also find equation of the tangent at that point​

Answers

Answered by amansharma264
10

EXPLANATION.

 \sf :  \implies \: equation \: of \: curve \:  =  {x}^{3}  +  {y}^{3}  =  {a}^{3}  \\  \\ \sf :  \implies \: the \: tangent \: is \: parallel \: to \: x \: axis

\sf :  \implies \: differentiate \: w.r.t \:  \:  \: x \\  \\ \sf :  \implies \: 3 {x}^{2}  + 3 {y}^{2} \frac{dy}{dx} = 0 \\  \\   \sf :  \implies \:  \frac{dy}{dx}  =  \frac{ - 3 {x}^{2} }{3 {y}^{2} }  \\  \\ \sf :  \implies \:  \frac{dy}{dx}  =  \frac{ -  {x}^{2} }{ {y}^{2} }  \\  \\ \sf :  \implies \: let \: the \: point \: be \: (h ,k)

 \sf :  \implies \: tangent \: is \: parallel \: to \: x \: axis \\  \\  \sf :  \implies \:  \frac{dy}{dx}  = 0 \\  \\ \sf :  \implies \:  \frac{ -  {h}^{2} }{ {k}^{2} }  = 0 \\  \\ \sf :  \implies \:  -  {h}^{2}  = 0 \\  \\ \sf :  \implies \: h \:  \:  = 0

\sf :  \implies \: put \: the \: value \: of \: h \:  = 0 \: in \: equation \\  \\ \sf :  \implies \: 0 +  {k}^{3}  =  {a}^{3}  \\  \\ \sf :  \implies \: k \:  = a \\  \\ \sf :  \implies \: points \: are \:   = (0 ,a)

 \sf :  \implies \: equation \: of \: tangent \:  = (y -   y_{1}) = m(x - x_{1 }) \\  \\ \sf :  \implies \: slope \:  = 0 \\  \\ \sf :  \implies \: (y - a) = 0(x - 0) \\  \\ \sf :  \implies \: y \:  = a \:  \:  \: equation \: of \: tangent

Answered by SaI20065
19

\sf{\gray{\underbrace{\red{ANSWER}}}}

\rm\huge{x}^{3}  +  {y}^{3}  =  {a}^{3}

\rm the \: tangent \: is \: parllel \: to \: x \: axis

\huge\rm{ {3x}^{2}  +  {3y}^{2}  \:  \: \frac{dy}{dx \:  \:  }  = 0}

\huge\rm \: \frac{dy}{dx}  =   \frac{ { - 3x}^{2} }{ {3y}^{2} }

\huge \rm \: \frac{dy}{dx}  =      \frac{ { - x}^{2} }{ -  {y}^{2} }

\rm \: let \: the \: point \: be \: (h \: k)

 \rm \: tangent \: is \: parllel \: to \: x \: axis

\huge\rm \: \frac{dy}{dx}  = 0

\huge\rm \frac{ { - h}^{2} }{{k}^{2} }  = 0

\huge\rm \: h = 0

\rm \: put \: value \: of \: h \:  = 0 \: in \: equation

\huge\rm \: 0 +  {k}^{3 }  =  {a}^{2}

\huge\rm \: k \:  = a

\rm \: points \: are \:  = (0 \: a)

\rm \: equation \: of \: tangent \:  = (y - y1)</p><p>

\huge\rm \:  = m(x - x1)

\huge\rm \: slope = 0

\huge\rm \: (y - a) \:  =  \: 0(x - 0)

 \rm \: y = a \:  \: equation \: of \: tangent

Similar questions