Math, asked by snehachakraborty454, 9 months ago

find whether the following equations have real roots. if real roots exist,find them. (i) 8x^2 + 2x - 3=0 (ii) -2x^2 + 3x + 2=0 (iii) 5x^2 - 2x - 10=0 (iv) 1 / 2x-3 + 1 / x-5=1 , x ≠ 3 / 2 , 5 (v) x^2 + 5√5 - 70=0

Answers

Answered by mysticd
16

 i) Compare \: given \: Quadratic \: equation

 8x^{2}+2x-3 = 0 \: with \: ax^{2}+bx+c=0 ,we

 get

 a = 8 , \: b = 2 \:and \: c = -3

 Discreminant (D)

 = b^{2} - 4ac

 = 2^{2} - 4\times 8 \times (-3)

 = 4 + 96

 = 100 \gt 0

 \therefore \green { Roots \: are \: real \:and \: distinct . }

 ii) Compare \: given \: Quadratic \: equation

 -2x^2 + 3x + 2=0 \: with \: ax^{2}+bx+c=0 ,we

 get

 a = -2 , \: b = 3 \:and \: c = 2

 Discreminant (D)

 = b^{2} - 4ac

 = 3^{2} - 4\times (-2) \times 2

 = 9 + 16

 = 25 \gt 0

 \therefore \green { Roots \: are \: real \:and \: distinct . }

 iii) Compare \: given \: Quadratic \: equation

 5x^2 -2 x - 10 =0 \: with \: ax^{2}+bx+c=0 ,we

 get

 a = 5 , \: b = -2 \:and \: c = -10

 Discreminant (D)

 = b^{2} - 4ac

 = (-2)^{2} - 4\times 5 \times (-10)

 = 4 + 200

 = 204 \gt 0

 \therefore \green { Roots \: are \: real \:and \: distinct . }

 iv) Given \: Quadratic \: equation :

 \frac{1}{2x-3} + \frac{1}{x-5} = 1

 \implies \frac{x-5+2x-3}{(2x-3)(x-5)} = 1

 \implies \frac{ 3x-8 }{2x^{2} - 10x - 3x + 15} = 1

 \implies \frac{ 3x-8 }{2x^{2}  - 13x + 15} = 1

 \implies 3x - 8 = 2x^{2} - 13x + 15

 \implies 0 = 2x^{2} - 13x + 15- 3x + 8

 \implies 2x^{2} - 16x + 23 = 0

Compare \: given \: Quadratic \: equation

 2x^2 -16x +23 =0 \: with \: ax^{2}+bx+c=0 ,we

 get

 a = 2 , \: b = -16\:and \: c = 23

 Discreminant (D)

 = b^{2} - 4ac

 = (-16)^{2} - 4\times 2 \times 23

 = 256 - 184

 = 72 \gt 0

 \therefore \green { Roots \: are \: real \:and \: distinct . }

•••♪

Answered by Anonymous
249

\sf\red{ i) \ Compare \: given \: Quadratic \: equation }

\sf\purple{ 8x^{2}+2x-3 = 0 \: with \: ax^{2}+bx+c=0 , \ we \ get}

\sf \purple{a = 8 , \: b = 2 \:and \: c = -3}

\sf\purple{ Discreminant (D)}

\sf \purple{= b^{2} - 4ac}

\sf\purple{ = 2^{2} - 4\times 8 \times (-3) }

\sf \purple{= 4 + 96}

\sf \purple{= 100 \gt 0}

\sf \therefore \green { Roots \: are \: real \:and \: distinct . }

\sf \red{ii) \ Compare \: given \: Quadratic \: equation}

\sf\orange{ -2x^2 + 3x + 2=0 \: with \: ax^{2}+bx+c=0 ,we \ get}

\sf \orange{a = -2 , \: b = 3 \:and \: c = 2}

\sf\orange{ Discreminant (D)}

\sf\orange{ = b^{2} - 4ac}

\sf\orange{ = 3^{2} - 4\times (-2) \times 2}

\sf \orange{= 9 + 16 }

\sf\orange{ = 25 \gt 0}

\sf \therefore \green { Roots \: are \: real \:and \: distinct . }

\sf\red{ iii) \ Compare \: given \: Quadratic \: equation}

\sf\blue{ 5x^2 -2 x - 10 =0 \: with \: ax^{2}+bx+c=0 ,we \ get }

\sf\blue{ a = 5 , \: b = -2 \:and \: c = -10}

\sf\blue{ Discreminant (D) }

\sf\blue{ = b^{2} - 4ac}

\sf \blue{= (-2)^{2} - 4\times 5 \times (-10)}

\sf \blue{= 4 + 200 }

\sf\blue{ = 204 \gt 0}

\sf \therefore \green { Roots \: are \: real \:and \: distinct . }

\sf\red{ iv) \ Given \: Quadratic \: equation :}

\sf\pink{ \dfrac{1}{2x-3} + \frac{1}{x-5} = 1 }

\sf\pink{ \to\:\: \dfrac{x-5+2x-3}{(2x-3)(x-5)} = 1 }

\sf \pink{\to\:\: \dfrac{ 3x-8 }{2x^{2} - 10x - 3x + 15} = 1 }

 \sf\pink{\to\:\: \dfrac{ 3x-8 }{2x^{2}  - 13x + 15} = 1 }

\sf \pink{\to\:\: 3x - 8 = 2x^{2} - 13x + 15}

 \sf\pink{\to\:\: 0 = 2x^{2} - 13x + 15- 3x + 8 }

\sf\pink{ \to\:\: 2x^{2} - 16x + 23 = 0 }

\sf \pink{Compare \: given \: Quadratic \: equation}

\sf\pink{ 2x^2 -16x +23 =0 \: with \: ax^{2}+bx+c=0 ,we \ get }

 \sf \pink{a = 2 , \: b = -16\:and \: c = 23}

\sf\pink{ Discreminant (D)}

\sf \pink{= b^{2} - 4ac}

\sf \pink{= (-16)^{2} - 4\times 2 \times 23}

\sf \pink{= 256 - 184}

\sf\pink{ = 72 \gt 0}

\sf \therefore \green { Roots \: are \: real \:and \: distinct . }

Similar questions