Math, asked by khushi369sharma, 1 month ago

Find whether the function is maxima or minima at the stationary point. Z = f(x, y) = x²+ 2x y²+ 2y²​

Answers

Answered by farhantanzeem786
0

Answer:

you solve it yourself because it's your question

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f =  {x}^{2} +  {2xy}^{2} +  {2y}^{2}  -  -  - (1)

Differentiate partially w. r. t. x, we get

\rm :\longmapsto\:\dfrac{\partial f}{\partial x}  =  2x +  {2y}^{2}

\rm :\longmapsto\:\dfrac{\partial f}{\partial y}  =  4xy +  {4y}

\rm :\longmapsto\:A = \dfrac{ {\partial }^{2} f}{ {\partial x}^{2} }  = 2

\rm :\longmapsto\:B = \dfrac{ {\partial }^{2} f}{ {\partial x}\partial y }  = 4y

\rm :\longmapsto\:C = \dfrac{ {\partial }^{2} f}{ {\partial y}^{2} }  = 4x + 4

For stationary points,

\rm :\longmapsto\:\dfrac{\partial f}{\partial x}  = 0 \:  \: and \:  \: \dfrac{\partial f}{\partial y}  = 0

\rm :\longmapsto\:2x +  {2y}^{2}  = 0 \:  \: and \:  \: 4xy + 4y = 0

\rm :\longmapsto\:x +  {y}^{2}  = 0 \:  \: and \:  \: 4y (x+ 1)= 0

\rm :\implies\:y = 0 \:  \:  \: or \:  \:  \: x =  - 1

Now, when y = 0

\rm :\longmapsto\: {y}^{2}  = 0

\rm :\implies\:y = 0

Now, when x = - 1

\rm :\longmapsto\: - 1 +  {y}^{2}  = 0

\rm :\longmapsto\:  {y}^{2}  = 1

\rm :\implies\:y =  \:  \pm \: 1

So, stationary points are

\rm :\longmapsto\:(0,0), \: ( - 1,1), \: ( - 1, - 1)

Consider,

\rm :\longmapsto\:AC -  {B}^{2}

\rm  \:  =  \: \:2(4x + 4) -  {(4y)}^{2}

\rm  \:  =  \: \:8x + 8 - 16 {y}^{2}

Now,

Concept of Maxima and Minima

\rm :\longmapsto\:If \: AC -  {B}^{2} > 0, \: A > 0 \: then \: f \: is \: minimum

\rm :\longmapsto\:If \: AC -  {B}^{2} > 0, \: A  <  0 \: then \: f \: is \: maximum

\rm :\longmapsto\:If \: AC -  {B}^{2}  <  0, \: \: then \: point \: is \: saddle \: point.

Consider,

\rm :\longmapsto\:Case - 1 \: Point \: is \: (0,0)

So,

\rm :\longmapsto\:A = \dfrac{ {\partial }^{2} f}{ {\partial x}^{2} }  = 2

\rm :\longmapsto\:B = \dfrac{ {\partial }^{2} f}{ {\partial x}\partial y }  = 4y = 0

\rm :\longmapsto\:C = \dfrac{ {\partial }^{2} f}{ {\partial y}^{2} }  = 4x + 4 = 4

So,

\rm :\longmapsto\:AC -  {B}^{2}  = 8 - 0 = 8

\rm :\longmapsto\:AC -  {B}^{2}  > 0 \: and \: A > 0

\rm :\implies\:f \: is \: minimum \: at \: (0,0)

and

\rm :\implies\:Minimum \: value \: is \: f(0,0) = 0

 \red{\rm :\longmapsto\:Case - 2 \: Point \: is \: ( - 1,1)}

\rm :\longmapsto\:A = \dfrac{ {\partial }^{2} f}{ {\partial x}^{2} }  = 2

\rm :\longmapsto\:B = \dfrac{ {\partial }^{2} f}{ {\partial x}\partial y }  = 4y = 4

\rm :\longmapsto\:C = \dfrac{ {\partial }^{2} f}{ {\partial y}^{2} }  = 4x + 4 = 0

So,

\rm :\longmapsto\:AC -  {B}^{2}  = 0 - 16 =  - 16

\rm :\longmapsto\:AC -  {B}^{2} < 0

\bf\implies \:( - 1,1) \: is \: saddle \: point.

\red{\rm :\longmapsto\:Case - 2 \: Point \: is \: ( - 1, - 1)}

\rm :\longmapsto\:A = 2

\rm :\longmapsto\:B =  - 4

\rm :\longmapsto\:C = 0

So,

\rm :\longmapsto\:AC -  {B}^{2}  = 0 - 16 =  - 16

\rm :\longmapsto\:AC -  {B}^{2}   < 0

\bf\implies \:( - 1, - 1) \: is \: saddle \: point.

Similar questions