Physics, asked by tbsneelima, 11 months ago

Find whether the given electric fields are possible or impossible electric field:
Ë; = xyî +2 yzj + 3xzk and Ē, = y’î + (2xy + z?)+2 yzk .
(a) Only Ē is a possible electrostatic field.
(b) Both Ē and Ē, are possible electrostatic field.
(c) Only Ē, is a possible electrostatic field.
(d) Both Ē, and Ē, are impossible electrostatic field.​

Answers

Answered by CarliReifsteck
16

Given that,

E=xyi+2yzj+3xzk

\bar{E}=y^2i+(2xy+z^2)j+2yzk

We know that,

The electric fields are possible. If the \Delta\times E=0

We need to find the electric field will possible

Using formula for electric field

For equation (I),

\Delta\times E=(\dfrac{d}{dx}+\dfrac{d}{dy}+\dfrac{d}{dz})\times(xyi+2yzj+3xzk)

\Delta\times E=i(\dfrac{d}{dy}(3xz)-\dfrac{d}{dz}(2yz))-j(\dfrac{d}{dx}(3xz)-\dfrac{d}{dz}(xy))+k(\dfrac{d}{dx}(2yz)-\dfrac{d}{dy}(xy))

\Delta\times E=i(0-2y)-j(3z-0)+k(0-x)

\Delta\times E=-2yi-3zj-kx

\Delta\times E\neq 0

For equation (II),

\Delta\times \bar{E}=(\dfrac{d}{dx}+\dfrac{d}{dy}+\dfrac{d}{dz})\times(y^2i+(2xy+z^2)j+2yzk)

\Delta\times \bar{E}=i(\dfrac{d}{dy}(2yz)-\dfrac{d}{dz}((2xy+z^2))-j(\dfrac{d}{dx}(2y^2)-\dfrac{d}{dz}(y^2))+k(\dfrac{d}{dx}(2xy+z^2)-\dfrac{d}{dy}(y^2))

\Delta\times \bar{E}=i(2z-2z)-j(0-0)+k(2y-2y)

\Delta\times \bar{E}=0

Hence,  Only \bar{E} is possible electrostatic field.

(c) is correct option.

Answered by ash9798
4

Answer:

c is correct answer of this question

Similar questions