Math, asked by ajaypathak0876, 3 months ago

Find whether the pair of numbers 615, 154 is co-prime or not.​

Answers

Answered by shirinsultana5172
3

Step-by-step explanation:

Given, the two numbers 847,2160

Here, Co-primes are 2 numbers which have only one as a common factor.

Let, a=2160

b=847

Then, by Euclid's lemma

a=bq+r,0≤r<b

So,

2160=847×2+466

847=466×1+381

466=381×1+85

381=85×4+41

85=41×2+3

41=3×13+2

3=2×1+1

2=1×2+0

As 1 is the H.C.F of 847 and 2160,

∴ 847 and 2160 are co-primes as they have only 1 as their H.C.F.

Answered by k2008sharma
2

Answer:

Givennumbers615and154are

\green { Co-prime }Co−prime

Step-by-step explanation:

\underline { \pink { Co-prime }}

Co−prime

\begin{gathered} If \: HCF \: of \: two \: numbers \: equal \: to \: 1 \\ then \: they \: are \: called \: Co-prime. \end{gathered}

IfHCFoftwonumbersequalto1

thentheyarecalledCo−prime.

Given \: numbers \: 615 \: and \: 154Givennumbers615and154

Here , 615 > 154Here,615>154

\begin{gathered} Start \: with \:the \: larger \:integer \: , that \:is, \\615. Apply \: the \: Euclid's \: division \: algorithm \\we \:get \end{gathered}

Startwiththelargerinteger,thatis,

615.ApplytheEuclid

sdivisionalgorithm

weget

615 = 154 \times 3 + 53615=154×3+53

\begin{gathered} Since, \: the \: remainder \: 53 ≠ 0 , we \\apply \: the \: division \: algorithm \:to \: 53, to \:get \end{gathered}

Since,theremainder53

=0,we

applythedivisionalgorithmto53,toget

154 = 53 \times 2 + 48154=53×2+48

53 = 48 \times 1 + 553=48×1+5

48 = 5 \times 9 + 348=5×9+3

5 = 3\times 1 + 25=3×1+2

3 = 2\times 1 + 13=2×1+1

2 = 1\times 2 + 02=1×2+0

\begin{gathered} The \: remainder \: has \: now \: become \\zero, \: so \: our \: procedure \: stops . \end{gathered}

Theremainderhasnowbecome

zero,soourprocedurestops.

\begin{gathered} Since, the \: divisor \: at \:this \:stage \:is \: 1,\\HCF \: of \: 615\: and \: 154 \: is \: 1 . \end{gathered}

Since,thedivisoratthisstageis1,

Similar questions