find x (0<x<π/2) satisfying : (cos x/cosec+1) + (cos x/cosec-1) =2
Answers
Answered by
3
Answer:
π / 4 radians or 45°
Step-by-step explanation:
( cos x / cosec x + 1 ) + ( cos x / cosec x - 1 ) = 2
⇒ 2cosx.cosec x / cot²x = 2
⇒ cosx.cosec x / cot² x = 1
⇒ [ cos x × ( 1 / sin x ) ] / cot² x = 1
⇒ ( cos x / sin x ) / cot² x = 1
⇒ cot x / cot² x = 1
⇒ 1 / cot x = 1
⇒ tan x = 1
⇒ tan x = tan 45°
⇒ x = 45°
We know that
1° = π / 180 radians
⇒ x = 45° × ( π / 180 )
⇒ x = π / 4
Therefore the value of x is π / 4 radians or 45°.
Similar questions