Math, asked by dagarnishchal, 3 months ago

Find x,0<x<π/2, when A+A' = I. If

[cos x sin x]
[sin x cos x] = A

Please tell me the answer
solve on the paper and please upload it ​

Answers

Answered by mathdude500
3

Correct Statement is

Find x,

 \sf \: If \: A = \begin{bmatrix} cosx &amp;  - sinx\\ sinx &amp; cosx\end{bmatrix}, \: 0 &lt; x &lt; \dfrac{\pi}{2}  \: when \: A + A'  = I

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:A = \begin{bmatrix} cosx &amp;  - sinx\\ sinx &amp; cosx\end{bmatrix}

So,

\rm :\longmapsto\:A'  = \begin{bmatrix} cosx &amp;  sinx\\  - sinx &amp; cosx\end{bmatrix}

Now,

According to statement,

\rm :\longmapsto\:A + A'  = I

\rm :\longmapsto\:\begin{bmatrix} cosx &amp;  - sinx\\ sinx &amp; cosx\end{bmatrix} + \begin{bmatrix} cosx &amp;  sinx\\  - sinx &amp; cosx\end{bmatrix} = \begin{bmatrix} 1 &amp; 0\\ 0 &amp; 1\end{bmatrix}

\rm :\longmapsto\:\begin{bmatrix} 2cosx &amp;  0\\  0 &amp; 2cosx\end{bmatrix} = \begin{bmatrix} 1 &amp; 0\\ 0 &amp; 1\end{bmatrix}

On comparing, we get

\rm :\longmapsto\:2cosx = 1

\rm :\longmapsto\:cosx = \dfrac{1}{2}

\rm :\longmapsto\:cosx = cos60 \degree

\bf\implies \:x = 60 \degree \:

Additional Information :-

For any two matrices A and B,

 \boxed{ \bf \:  {(A + B)}^{'}  = A'  + B' }

 \boxed{ \bf \:  {(A  -  B)}^{'}  = A'   -  B' }

 \boxed{ \bf \:  {(kA)}^{'}  = k \: A' } \:  \sf \: where \: k \in \: R

 \boxed{ \bf \:  {(A' )}^{'}  = A}

 \boxed{ \bf \:  {(AB)}^{'}  = B' A' }

Similar questions