Math, asked by gunjan420, 9 months ago

find x: 1/a+b+x = 1/a + 1/b + 1/x​

Answers

Answered by Saby123
12

Solution -

 \sf{ \dfrac{ 1 }{ a + b + x } = \dfrac{ 1}{a} + \dfrac{1}{b} + \dfrac{1}{x} } \\ \\ \sf{ \implies { \dfrac{ 1 }{ a + b + x }  - \dfrac{ 1}{x} = \dfrac{ 1 }{ a } + \dfrac{ 1 }{ b } }} \\ \\ \sf{ \implies { \dfrac{x - a - b - x }{ ( a + b + x ) x } = \dfrac{ a + b }{ ab } }} \\ \\ \sf{ \implies { \dfrac{ -a - b } { ( a + b + x ) x } = \dfrac{ a + b }{ ab } }} \\ \\ \sf{ \implies { \dfrac{ -1 }{( a + b + x ) x } = \dfrac{ 1 }{ ab } }} \\ \\ \sf{ \bold { Cross \: Multiplying \: - }} \\ \\ \sf{ a + b + x = - ab } \\ \\ \sf{ \implies { x = \dfrac{ - ab }{ a + b } }} \\ \\ \sf{ \bold { This \: is \: the \: required \: answer \: . }}

__________________________________________________

Answered by ItsTogepi
6

\huge\underline{\underline{\mathfrak{\color{teal} Solution:}}}

\rule{300}{2}

\bold{ \frac{1}{a + b + x}  =  \frac{1}{a}  +  \frac{1}{b}  +  \frac{1}{x} }

\bold{\implies \frac{1}{a + b + x}  -  \frac{1}{x} =  \frac{1}{a}  +  \frac{1}{b}   }

\bold{\implies  \frac{\cancel{x} - a - b -  \cancel{ x}}{(a + b + x)x} =  \frac{a + b}{ab}  }

\bold{\implies  \frac{ - a - b}{(a + b + x)x}   =  \frac{a + b}{ab} }

\bold{\implies  \frac{ - 1}{(a + b + x)x} =  \frac{1}{ab}  }

\sf{Now ,\: by \: cross \: multiplying \: ,we \: get,}

\bold{\implies( a + b + x)x =  - ab}

\bold{\implies x =  \frac{ - ab}{a + b + x} }

\sf{Therefore ,\: thehe \: required \: value \: of \: x =  \frac{ - ab}{a + b + x} }

\rule{300}{2}

\huge\underline{\underline{\mathfrak{\color{teal}ThankYou}}}

Similar questions