Math, asked by patelarya302, 7 months ago

find (x+1/x)=8, find the value of (x²+1/x²) and (x4+1/x4)?

Answers

Answered by aryangupta27941
6

Answer:

Hence the answer is

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 62

 {x}^{4}  +  \frac{1}{ {x}^{4} }  =  3842

Step-by-step explanation:

x +  \frac{1}{x}  = 8 \\ taking \: square \: on \: both \: side \\(  {x +  \frac{1}{x} })^{2}  = ( {8})^{2}  \\   {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  = 64 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 64 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 64 - 2 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 62

 {x}^{4}  +  \frac{1}{ {x}^{4} }  = ( {x}^{2}  +  \frac{1}{ {x}^{2} } ) ^{2}  - 2 \times  {x}^{2}  \times  \frac{1}{ {x}^{2} }  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }   = ({62})^{2}  - 2 \\  = 3844 - 2 \\ = 3842

Similar questions