Math, asked by manideepR2525, 1 year ago

Find x+1/x,if square+1/x square=62

Answers

Answered by chetanverma167
1

Step-by-step explanation:

It is given That,

 \frac{ {x}^{2} + 1}{ {x}^{2} }  = 62

Now ,

By Cross Multiplying,

We get,

 {x}^{2}  + 1 = 62 {x}^{2}

1 = 62 {x}^{2}  -  {x}^{2}

1 = 61 {x}^{2}

 \frac{1}{61}  =  {x}^{2}

x =  \frac{ + }{}  \frac{1}{ \sqrt{61} }

Now ,

We Have To Find ,

 \frac{x + 1}{x}

Case 1:

Put

x =  \frac{1}{ \sqrt{61} }

we get,

 \frac{  \frac{1}{ \sqrt{61} }  + 1  }{ \frac{1}{ \sqrt{61} } }

  \frac{ \frac{1 +  \sqrt{61} }{ \sqrt{61} } }{ \frac{1}{ \sqrt{61} } }

 \frac{x + 1}{x}  = 1 +  \sqrt{61}

Case 2:

Put

x =   - \frac{ 1}{ \sqrt{61} }

 \frac{ \frac{ - 1 +  \sqrt{61} }{ \sqrt{61} } } { \frac{ - 1}{ \sqrt{61} } }

 \frac{x + 1}{x}  =  \frac{ - 1 +  \sqrt{61} }{ - 1}

 \frac{x + 1}{x}  =  - ( - 1 +  \sqrt{61)}

 \frac{x  + 1}{x}  = 1 -  \sqrt{61}

Hence Solveddd....

Hope it Helpsss,

Similar questions