Math, asked by Reddyteja265, 11 months ago

Find:-x+1/x if x to the power 4+1/x to the power 4 is 47

Answers

Answered by tahseen619
2

3.

Step-by-step explanation:

Given:

 {x}^{4}  +  \dfrac{1}{ {x}^{4} }  = 47

To find:

x +  \dfrac{1}{x}

How can we solve ?

1. By Squaring and elimination of square.

2. Using Algebra Formula

3. Simplify and Answer.

Solution:

 {x}^{4}  +  \dfrac{1}{ {x}^{4} }  = 47

[Adding 2 in both sides]

 {x}^{4}  +  \dfrac{1}{ {x}^{4} } + 2  = 47 + 2 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2. {x}^{2} . \frac{1}{ {x}^{2} }  = 49 \\  \\  {( {x}^{2}  +  \frac{1}{ {x}^{2} })}^{2}  =  {7}^{2}

[Eliminating Square from both sides]

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 7

[Adding 2 in both sides]

 {x}^{2}  +  \frac{1}{ {x}^{2} } + 2  = 7 + 2 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2.x. \frac{1}{x}  = 9 \\  \\  {(x +  \frac{1}{x})}^{2}  =  {3}^{2}

[Eliminating Square from both sides]

\boxed{x +  \frac{1}{x}  = 3}

The required answer is 3.

Some Important Algebra Formula

 {(x + y)}^{2}={x}^{2}+{y}^{2}+2xy\\ \\{(x - y)}^{2}={x}^{2}+{y}^{2}-2xy\\ \\{(x+y)}^{2}= (x - y) {}^{2}+4xy\\ \\{(x-y)}^{2}=(x+y){}^{2}-4xy\\ \\ (x + y)^{2}+(x-y)^{2}=2( {x}^{2}+{y}^{2} )\\ \\(x+y)^{2}- (x-y) {}^{2}=4xy

Similar questions