Math, asked by akshatmishra005, 1 year ago

Find [x-1/x]whole cubed where x=3+2under root 2

Answers

Answered by Anonymous
0

 \rm{x = 3 + 2 \sqrt{2} }

 \rm{ \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} } }

 \rm{rationalise \: the \: denominator}

  \implies\rm{ \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} } \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  }

\implies\rm{ \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{ {3}^{2}   - { (2 \sqrt{2})}^{2}  }}

 \star \rm{note : \:{(2 \sqrt{2})}^{2}  =  {2}^{2}  \times  {( \sqrt{2} )}^{2}    } \\  = {4 \times 2 = 8} \\  \implies\rm{ \frac{1}{x}  =  \frac{3 - 2 \sqrt{2}  }{ 9   - 8 }}

\implies\rm{  \frac{1}{x}  =  3 - 2 \sqrt{2}}

 \rm{now}

 \rm{x -    \frac{1}{x}  =3 + 2 \sqrt{2} - (3 - 2 \sqrt{2}    )}

\implies\rm{x -    \frac{1}{x}  =3 + 2 \sqrt{2} - 3  + 2 \sqrt{2}}

 \implies\rm{x -    \frac{1}{x}  =4 \sqrt{2} } \\\implies \rm{ {(x -  \frac{1}{x}) }^{3} =  {(4 \sqrt{2} )}^{3}  }

 \fbox{\rm{ {( x -    \frac{1}{x}) }^{3}  =128\sqrt{2} }}

Similar questions