find x......................
Answers
Answer:
The value of x is .
Step-by-step explanation-
We know that the sum of the angles of a quadrilateral is 360°.
Now, collect all like terms and solve the equation.
Hence, x = 70°
Answer:-
Given:-
- ∠a = 180° - x
- ∠b = 360° - 3x
[∵ ∠b + 3x = 360° (Reflex)]
- ∠c = 180° - 2x
- Constant angle given = 60°
To Find:-
Measurement of x in the given figure.
_____________...
We know,
Sum of int. ∠s of a quadrilateral = 360°
According to the Question:-
∠a + ∠b + ∠c + 60° = 360°
After substitution of the angles... (see Given)
⟹ (180° - x) + (360° - 3x) + (180° - 2x) + 60° = 360°
⟹ 180° - x + 360° - 3x + 180° - 2x + 60° = 360°
⟹ 180° + 360° + 180° + 60° - x - 3x - 2x = 360°
⟹ 780° - 6x = 360°
⟹ - 6x = 360° - 780°
⟹ - 6x = - 420°
⟹ 6x = 420°
⟹ x = 420°/6
⟹ x = 70° ...(Answer)
Verification:- (Not Required)
LHS:-
(180° - x) + (360° - 3x) + (180° - 2x) + 60°
= (180° - 70°) + [360° - 3(70°)] + [180° - 2(70°)] + 60°
= 110° + (360° - 210°) + (180° - 140°) + 60°
= 110° + 150° + 40° + 60°
= 260° + 100°
= 360°
RHS:-
360°
∴ LHS = RHS.