Math, asked by gautami88, 8 months ago

find x......................​

Attachments:

Answers

Answered by Anonymous
17

Answer:

The value of x is  \tt {70°} .

Step-by-step explanation-

</u><u>∠a = 180° - x</u><u>

</u><u> </u><u>∠b = 360° - 3x</u><u>

</u><u> </u><u>∠c = 180° - 2x</u><u>

We know that the sum of the angles of a quadrilateral is 360°.

 ∴ \: ∠a + ∠b  \:  +  \: ∠c \:  + 60° = 360°

⇒180° - x + 360° - 3x + 180° - 2x  + 60°= 360°

Now, collect all like terms and solve the equation.

⇒  - x  - 3x - 2x + 180° + 180° + 360°+ 60°= 360°

⇒ - 6x + 780° = 360°

⇒ - 6x = 360° - 780°

⇒ - 6x =  - 420°

∴x =  \frac{-420°}{-6}  = 70°

Hence, x = 70°

Attachments:
Answered by Anonymous
8

Answer:-

Given:-

  • ∠a = 180° - x
  • ∠b = 360° - 3x

[∵ ∠b + 3x = 360° (Reflex)]

  • ∠c = 180° - 2x
  • Constant angle given = 60°

To Find:-

Measurement of x in the given figure.

_____________...

We know,

Sum of int. ∠s of a quadrilateral = 360°

According to the Question:-

∠a + ∠b + ∠c + 60° = 360°

After substitution of the angles... (see Given)

⟹ (180° - x) + (360° - 3x) + (180° - 2x) + 60° = 360°

⟹ 180° - x + 360° - 3x + 180° - 2x + 60° = 360°

⟹ 180° + 360° + 180° + 60° - x - 3x - 2x = 360°

⟹ 780° - 6x = 360°

⟹ - 6x = 360° - 780°

⟹ - 6x = - 420°

⟹ 6x = 420°

⟹ x = 420°/6

⟹ x = 70° ...(Answer)

Verification:- (Not Required)

LHS:-

(180° - x) + (360° - 3x) + (180° - 2x) + 60°

= (180° - 70°) + [360° - 3(70°)] + [180° - 2(70°)] + 60°

= 110° + (360° - 210°) + (180° - 140°) + 60°

= 110° + 150° + 40° + 60°

= 260° + 100°

= 360°

RHS:-

360°

LHS = RHS.

Similar questions