Math, asked by krrishsinghchd1, 22 hours ago

Find x^2y^2/4 if x and y are integers such that y2-30x2=517-3x2y2

Answers

Answered by kp222784
0

Answer:

i am not getting your question please write in

x {}^{2} y { }^{2} \div4

like this

Answered by dikshaagarwal4442
0

Answer:

The value of  \frac{x^2y^2}{4} = 49

Step-by-step explanation:

Given expression is, y^2-30x^2 = 517-3x^2y^2

                                 y^2-30x^2+3x^2y^2 = 517

 Rearranging the terms, 3x^2y^2+y^2-30x^2 = 517

 By subtracting 10 on both sides, 3x^2y^2+y^2-30x^2 -10 = 517 - 10

                                                        y^2(3x^2+1) - 10(3x^2+1) = 507

                                                       (y^2-10)(3x^2+1)  = 507

            [By factorizing, 507 = 3 × 169 = 3 × 13 × 13 = 3 × 13²]

From above equation, (y^2-10)(3x^2+1)  = 3\times13\times13

As x and y are integers, so (3x² + 1) ≠ 169 and (3x² + 1) ≠ 3

                                        (3x² + 1) = 13

                                        3x² = 13 - 1 = 12

                                          x² = 4     and   x = +2 or -2

Then y² - 10 = 3 × 13 = 39

         y² = 39 + 10 = 49

        y² = 49  and y = +7 or -7

  • The value of  \frac{x^2y^2}{4} = \frac{4\times49}{4} = 49

To know similar type of problems visit the link below:

https://brainly.in/question/50801793

https://brainly.in/question/9030600

Similar questions