Find x.AC=10√3.BD=5
Attachments:
Answers
Answered by
0
Answer:
In ∆ ADC
AD^2 = AC^2 - DC^2
AD^2 = (10√3)^2 - x^2
AD^2 = 300 - x^2..............(1)
now, in ∆ABC
AB^2 = BC^2 - AC^2
(5 + x)^2 - (10√3)^2
AB^2 = (5+x)^2 - 300..........(2)
again in ∆ABD
AD^2 = AB^2 - BD^2
AD^2 = (5+x)^2 - 300 + 5^2
AD^2 = (5+x)^2 -300 + 25...........(3)
from equation (1) and (3)
(5+x)^2 - 300 - 25 = 300 - x^2
25 + x^2 + 10x - 325 = 300 - x^2
2x^2 + 10x - 600 = 0
x^2 + 5x - 300 = 0
x^2 + 20x - 15x - 300 = 0
x(x + 20) - 15(x + 20) = 0
(x + 20) (x - 15) = 0
x = 15 or -20
x= 15 (ignoring -ve value)
Similar questions