Math, asked by anuragtiwarithethor, 10 months ago

find x and y I'm terms of matrix​

Attachments:

Answers

Answered by BrainlyPopularman
6

GIVEN :

  \\ \sf \:x + 2y =  \begin{bmatrix} 2&0&3 \\  \\ 1& - 1&1\end{bmatrix}  \:  \: and \:  \:2x - y =\begin{bmatrix} 1& - 4& - 5 \\  \\ 0& \:  2& - 1\end{bmatrix}   \\

TO FIND :

• x and y = ?

SOLUTION :

• According to the question –

  \\ \sf  \implies  x + 2y =  \begin{bmatrix} 2&0&3 \\  \\ 1& - 1&1\end{bmatrix}  \:  \: \:  -  -  - eq.(1) \\

• And –

  \\ \sf  \implies 2x - y =\begin{bmatrix} 1& - 4& - 5 \\  \\ 0& \:  2& - 1\end{bmatrix} \:  \: \:  \\

• Multiply with '2' –

  \\ \sf  \implies 4x - 2y =\begin{bmatrix} 2& - 8& - 10 \\  \\ 0& \:  4& -2\end{bmatrix} \:  \: \:  -  -  - eq.(2)  \\

• Add eq.(1) and eq.(2) –

  \\ \sf  \implies x + 2y + 4x - 2y =  \begin{bmatrix} 2&0&3 \\  \\ 1& - 1&1\end{bmatrix}  \:  +  \: \begin{bmatrix} 2& - 8& - 10 \\  \\ 0& \:  4& -2\end{bmatrix} \:  \: \:   \\

  \\ \sf  \implies 5x =  \begin{bmatrix} 2 + 2&0 - 8&3 - 10  \\  \\ 1 + 0& - 1 + 4&1 - 2\end{bmatrix} \\

  \\ \sf  \implies 5x =  \begin{bmatrix} 4& - 8& - 7  \\  \\ 1&3& - 1\end{bmatrix} \\

  \\ \sf  \implies x =  \left (\dfrac{1}{5}  \right) \begin{bmatrix} 4& - 8& - 7  \\  \\ 1&3& - 1\end{bmatrix} \\

• Using eq.(1) –

  \\ \sf  \implies  \left (\dfrac{1}{5}  \right) \begin{bmatrix} 4& - 8& - 7  \\  \\ 1&3& - 1\end{bmatrix} + 2y =  \begin{bmatrix} 2&0&3 \\  \\ 1& - 1&1\end{bmatrix} \\

  \\ \sf  \implies  \begin{bmatrix}  \dfrac{4}{5} &   - \dfrac{8}{5} & -  \dfrac{7}{5}  \\  \\ \dfrac{1}{5} & \dfrac{3}{5} & -  \dfrac{1}{5} \end{bmatrix} + 2y =  \begin{bmatrix} 2&0&3 \\  \\ 1& - 1&1\end{bmatrix} \\

  \\ \sf  \implies  2y =  \begin{bmatrix} 2&0&3 \\  \\ 1& - 1&1\end{bmatrix}  -  \begin{bmatrix}  \dfrac{4}{5} &   - \dfrac{8}{5} & -  \dfrac{7}{5}  \\  \\ \dfrac{1}{5} & \dfrac{3}{5} & -  \dfrac{1}{5} \end{bmatrix}  \\

  \\ \sf  \implies  2y =   \begin{bmatrix}  \dfrac{6}{5} &    \dfrac{8}{5} &  \dfrac{22}{5}  \\  \\ \dfrac{4}{5} & -  \dfrac{8}{5} &  \dfrac{6}{5} \end{bmatrix}  \\

  \\ \sf  \implies  2y =  2 \begin{bmatrix}  \dfrac{3}{5} &    \dfrac{4}{5} &  \dfrac{11}{5}  \\  \\ \dfrac{2}{5} & -  \dfrac{4}{5} &  \dfrac{3}{5} \end{bmatrix}  \\

  \\ \sf  \implies  y =   \begin{bmatrix}  \dfrac{3}{5} &    \dfrac{4}{5} &  \dfrac{11}{5}  \\  \\ \dfrac{2}{5} & -  \dfrac{4}{5} &  \dfrac{3}{5} \end{bmatrix}  \\

Similar questions