Math, asked by riyabaliyan7232, 1 year ago

find x and y if (3x-2iy)(2+i)²=10(1+i)

Answers

Answered by Krishnadon
31
Hope it will. Help u ok
Attachments:
Answered by DelcieRiveria
94

Answer:

The value of x is \frac{1}{5} and value of y is \frac{14}{15} .

Step-by-step explanation:

The given equation is

(3x-2iy)(2+i)^2=10(1+i)

(3x-2iy)(4+4i+i^2)=10(1+i)

(3x-2iy)(4+4i-1)=10+10i

(3x-2iy)(3+4i)=10+10i

9x+12xi-6iy-8yi^2=10+10i

9x+12xi-6iy+8y=10+10i

(9x+8y)+i(12x-6y)=10+10i

On comparing both sides.

9x+8y=10                  .... (1)

12x-6y=10                 ..... (2)

On solving (1) and (2), we get

x=\frac{1}{5}

y=\frac{14}{15}

Therefore the value of x is \frac{1}{5} and value of y is \frac{14}{15} .

Similar questions