Math, asked by vansh0018, 1 year ago

find X(cube)―1/x(cube) if X=4+√15

Answers

Answered by ShuchiRecites
1
Hello Mate!

if \: x = 4 +  \sqrt{15}  \\  \frac{1}{x}  =  \frac{1}{4 +  \sqrt{15} }  \times  \frac{4 -  \sqrt{15} }{4  -  \sqrt{15} }  \\  \frac{4 -  \sqrt{15} }{16 - 15}  = 4 -  \sqrt{15}  \\  {x}^{3}  =  {(4 +  \sqrt{15}) }^{3}  \\  =  {4}^{3}  +  { \sqrt{15} }^{3}  + 3 {(4)}^{2} ( \sqrt{15} ) + 3(4)( { \sqrt{15} )}^{2}  \\  = 64 + 15 \sqrt{15}  + 48 \sqrt{15}  + 180 \\  = 244 + 63 \sqrt{15}  \\  \frac{1}{ {x}^{3} }  =  {(4 -  \sqrt{15} )}^{3}  \\  {4}^{3}  -  { \sqrt{15} }^{3}  - 3 {(4)}^{2}  \sqrt{15}  + 3(4)( { \sqrt{15}) }^{2}  \\  = 64 - 15 \sqrt{1}  - 48 \sqrt{15}  + 180 \\  = 244 - 63 \sqrt{15}  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  = 244 + 63 \sqrt{15}  - (244 - 63 \sqrt{15} ) \\  = 126 \sqrt{15}
Formulas used = ( a + b )^3 = a^3 + b^3 + 3a^2b + 3ab^2
( a - b )^3 = a^3 - b^3 - 3a^2b + 3ab^2

Hope it helps☺!✌

Ping me out if any confusion
Similar questions