Math, asked by zamankazmi79, 1 month ago

Find x cube - y cube If, x-y=11,xy=2

Answers

Answered by Abhiram5566
3

Hello Buddy,

Thanks For Asking the Question

Your Answer is Below

----------------------------------------------------------------------------------------------

Given:-

x - y = 11

xy = 2

To Find:-

x^{3} - y^{3}

Formula Using:-

  • (x-y)^{3} =x^{3}-y^{3}  -\ 3x^{2} y\ +\ 3xy^{2}

Explanation:-

x - y = 11

Taking cube on both sides , we get

(x-y)^{3} = 11^{3}

x^{3} -y^{3} -3x^{2} y\ +3xy^{2} = 1331

x^{3} -y^{3} -3xy ( x - y ) = 1331

substituting value of ( x - y = 11 ) in equation. we get,

x^{3} -y^{3} -3xy ( 11 ) = 1331

now substituting value of ( xy = 2 ) in equation. we get,

x^{3} -y^{3} -3(2 ) ( 11 ) = 1331

x^{3} -y^{3} -6(11) = 1331

x^{3} -y^{3} -66 = 1331

x^{3} -y^{3}  = 1331 + 66

x^{3} -y^{3}  = 1397

                              \huge{\ornage{\boxed{\boxed{\pink{\green{\mathscr{ x^{3} -y^{3}=1397  }}} }} }}}

----------------------------------------------------------------------------------------------

Hope It Helps You Dear ! :D     ^_^

By Abhiram5566

                                  MARK ME AS BRAINLIEST ANSWER

----------------------------------------------------------------------------------------------

Similar questions