Math, asked by shuklas2707, 9 months ago

Find
x
for
e to the power sin x - e to the power -sin x =4​

Answers

Answered by MaheswariS
1

Find

x

for

e to the power sin x - e to the power -sin x =4​

\textbf{Given:}

e^{sin\,x}-e^{-sin\,x}=4

\textbf{To find:}

\text{The value of x}

\textbf{Solution:}

\text{Consider,}

e^{sin\,x}-e^{-sin\,x}=4

e^{sin\,x}-\dfrac{1}{e^{sin\,x}}=4

\dfrac{(e^{sin\,x})^2-1}{e^{sin\,x}}=4

(e^{sin\,x})^2-1=4\,e^{sin\,x}

(e^{sin\,x})^2-4\,e^{sin\,x}-1=0

t^2-4\,t-1=0

t=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

t=\dfrac{4\pm\sqrt{(-4)^2-4(1)(-1)}}{2(1)}

t=\dfrac{4\pm\sqrt{16+4}}{2}

t=\dfrac{4\pm\sqrt{4{\times}5}}{2}

t=\dfrac{4\pm\,2\sqrt{5}}{2}

t=2\pm\sqrt{5}

\textbf{Case(i):}

t=2+\sqrt{5}

e^{sin\,x}=2+\sqrt{5}

\implies\,sin\,x=\log({2+\sqrt{5}})

\implies\,x=sin^{-1}[\log({2+\sqrt{5}})]

\textbf{Case(iI):}

t=2-\sqrt{5}

e^{sin\,x}=2-\sqrt{5}

\textbf{This is not possible because $e^x$ cannot be negative}

\textbf{Answer:}

\textbf{The value of x is $\bf\,sin^{-1}[\log({2+\sqrt{5}})]$}

Find more:

2^2x - 6.2^x +1 + 32 = 0 find creative section​

https://brainly.in/question/19924291

Similar questions