Math, asked by Player0099, 5 months ago

Find x
(i) (-3x+1)/(x-2) = 3
(ii) (5x + 34)/3x = 49
(iii) 19x + 68 = 2x + 3
(iv) 5x + 9 = 19
(v) 9x + 11 = 5x - 3​

Answers

Answered by MrImpeccable
35

 {\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

Given:

  1. \dfrac{-3x + 1}{x - 2} = 3 \\
  2. \dfrac{5x + 34}{3x} = 49 \\
  3. 19x + 68 = 2x + 3
  4. 5x + 9 = 19
  5. 9x + 11 = 5x - 3

To find:

  • Value of x

Solution:

 (i)\implies \dfrac{-3x+1}{x-2} = 3 \\ \\ \implies -3x+1 = 3(x-2) \\ \implies -3x+1 = 3x-6 \\ \implies 3x+3x = 1 + 6 \\ \implies 6x = 7 \\ \\ \implies x = \dfrac{7}{6} \\ \\ \\

 (ii)\implies \dfrac{5x+34}{3x} = 49 \\ \\ \implies 5x+34= 49*3x \\ \implies 5x+34 = 147x \\ \implies 147x - 5x = 34 \\ \implies 142x = 34 \\ \\ \implies x = \dfrac{34}{142} \\ \\ \implies x = \dfrac{17}{71} \\ \\ \\

 (iii) \implies 19x + 68 = 2x + 3 \\ \implies 19x - 2x = 3 - 68 \\ \implies 17x = -65 \\ \\ \implies x = \dfrac{-65}{17} \\ \\ \\

(iv) \implies 5x + 9 = 19 \\ \implies 5x = 19 - 9 \\ \implies 5x = 10 \\ \implies x = 2 \\ \\ \\

 (v) 9x + 11 = 5x - 3 \\ \implies 9x - 5x = -3 - 11 \\ \implies 4x = -14 \\ \\ \implies x = \dfrac{-14}{4} \\ \\ \implies x = \dfrac{-7}{2} \\ \\ \\

Hope it helps!!!!


Anonymous: Excellent :)
MrImpeccable: Thanks. ✌ :)
Answered by Anonymous
25

\huge\underline{\overline{\mid{\bold{\blue{\mathcal{ANSWER}}\mid}}}}

To Find:-

  • The Value of X

Solution:-

1) \:  \:  \: (-3x+1)/(x-2) = 3

 =  >  - 3x + 1 = 3x - 6

 =  >   - 3x - 3x =  - 6 - 1

 =  >  - 6x =  - 7

 =  > x =  \frac{ - 7}{ - 6}

 =  > x =  \frac{7}{6}

2) \:  \:  \:  \: (5x + 34)/3x = 49

 =  > 5x + 34 = 49 \times 3x

 =  > 5x + 34 = 147x

 =  > 5x - 147x =  - 34

 =  >  - 142x =  - 34

 =  > x =  \frac{ - 34}{ - 142}

 =  > x = 0.239

3) \:  \:  \: 19x + 68 = 2x + 3

 =  > 19x - 2x =  - 68 + 3

 =  > 17x =  - 65

 =  > x = 3.82

4) \:  \:  \: 5x + 9 = 19

 =  > 5x = 19 - 9

 =  > 5x = 10

 =  > x =  \frac{10}{5}

 =  > x = 2

5) \:  \:  \: 9x + 11 = 5x - 3

 =  > 9x - 5x =  - 11 - 3

 =  > 4x =  - 14

 =  > x =  \frac{ - 14}{4}

 =  > x =  \frac{ - 7}{2}

Similar questions