Math, asked by koteshkondeboyina138, 8 months ago

find 'x' if 2log5+1/2 log 9- log 3 = log x

Answers

Answered by BrainlyIAS
6

Answer :

x = 25

Formulas :

  \rightarrow m\log n=\log m^n

  \rightarrow\log x=\log m\\\\ \rightarrow x=m

Step-by-step explanation :

2\log5+\frac{1}{2} \log9-\log3=\log x\\\\=>\log5^2+\log9^{\frac{1}{2}}-\log3=logx\\\\=>\log25+log3-log3=logx\\\\=>\log25=\log x\\\\=>x=25

>>> Hope Helps You <<<

Answered by Anonymous
0

Answer:

The given equation is

2\log 5+\frac{1}{2}\log 9-\log 3 =\log x2log5+

2

1

log9−log3=logx

We need to find the value of x.

Using power property of logarithm, the given equation can be rewritten as

\log 5^2+\log 9^{\frac{1}{2}}-\log 3 =\log xlog5

2

+log9

2

1

−log3=logx [\because \log_a x^n=n\log_a x][∵log

a

x

n

=nlog

a

x]

\log 25+\log 3-\log 3 =\log xlog25+log3−log3=logx

\log 25 =\log xlog25=logx

On comparing both sides we get

x=25

Similar questions