Math, asked by jihan466, 7 months ago

find x if 4sin inverse x= π- cos inverse x​

Answers

Answered by anglerao412
9

Answer:

Given: 4sin

−1

x+cos

−1

x=π

We know that sin

−1

x+cos

−1

x=

2

π

⇒cos

−1

x=

2

π

−sin

−1

x

Now we have,

4sin

−1

x+cos

−1

x=π

⇒4sin

−1

x+

2

π

−sin

−1

x=π

⇒3sin

−1

x=π−

2

π

⇒3sin

−1

x=

2

2π−π

⇒3sin

−1

x=

2

π

⇒sin

−1

x=

6

π

⇒x=sin(

6

π

)=

2

1

∴x=

2

1

Answere

Step-by-step explanation:

MARK ME AS BRAINLIEST PLEASE

Answered by Anonymous
19

\;\;\underline{\textbf{\textsf{Given:-}}}

\rm{4{\sin}^{-1}x=\pi-{\cos}^{-1}x}

\;\;\underline{\textbf{\textsf{ To Find:-}}}

• Value of x

\;\;\underline{\textbf{\textsf{Solution :-}}}

Given that,

\rm{4{\sin}^{-1}x=\pi-{\cos}^{-1}x}

\underline{\:\textsf{ We know that   :}}

\rm{{\sin}^{-1}x+{\cos}^{-1}x=\dfrac{\pi}{2}}

\underline{\:\textsf{ Then :}}

\dashrightarrow \rm{4{\sin}^{-1}x=\pi-(\dfrac{\pi}{2}-{\sin}^{-1}x)}

\dashrightarrow \rm{4{\sin}^{-1}x=\pi-\dfrac{\pi}{2}+{\sin}^{-1}x)}

\dashrightarrow \rm{4{\sin}^{-1}x-{\sin}^{-1}x=\pi-\dfrac{\pi}{2}}

\dashrightarrow \rm{3{\sin}^{-1}x=\dfrac{\pi}{2}}

\dashrightarrow \rm{{\sin}^{-1}x=\dfrac{\pi}{6}}

\dashrightarrow \rm{\sin\dfrac{\pi}{6}=x}

\dashrightarrow \rm{x=\dfrac{1}{2}}

\;\;\underline{\textbf{\textsf{ Hence-}}}

\underline{\textsf{ Value of x is  \textbf{ 1/2 or, 0.5 }}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\;\;\underline{\textbf{\textsf{ Need to Know -}}}

1)\rm{{\sin}^{-1}x+{\cos}^{-1}x=\dfrac{\pi}{2}}

2)\rm{{\tan}^{-1}x+{\cot}^{-1}x=\dfrac{\pi}{2}}

3)\rm{{\sec}^{-1}x+{\cosec}^{-1}x=\dfrac{\pi}{2}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions